The probability mass function for the discrete random variable \(X\) is shown below.
\begin{array} {|c|c|c|c|c|}
\hline X &\ \ \ \ \ \ -1\ \ \ \ \ \ &\ \ \ \ \ \ 0\ \ \ \ \ \ &\ \ \ \ \ \ 1\ \ \ \ \ \ & 2 \\
\hline \text{Pr}(X=x) & k^2 & 3k & k & -k^2-4k+1 \\
\hline \end{array}
The maximum possible value for the mean of \(X\) is:
- \(0\)
- \(\dfrac{1}{3}\)
- \(\dfrac{2}{3}\)
- \(1\)
- \(2\)