SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2022 VCAA 5

Consider the composite function `g(x)=f(\sin (2 x))`, where the function `f(x)` is an unknown but differentiable function for all values of `x`.

Use the following table of values for `f` and `f^{\prime}`.

`\quad x \quad` `\quad\quad 1/2\quad\quad` `\quad\quad(sqrt{2})/2\quad\quad` `\quad\quad(sqrt{3})/2\quad\quad`
`f(x)` `-2` `5` `3`
`\quad\quad f^{prime}(x)\quad\quad` `7` `0` `1/9`

 

  1. Find the value of `g\left(\frac{\pi}{6}\right)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

The derivative of `g` with respect to `x` is given by `g^{\prime}(x)=2 \cdot \cos (2 x) \cdot f^{\prime}(\sin (2 x))`.

  1. Show that `g^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{9}`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the equation of the tangent to `g` at `x=\frac{\pi}{6}`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the average value of the derivative function `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Find four solutions to the equation `g^{\prime}(x)=0` for the interval `x \in[0, \pi]`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    `3`

b.    `1/9`

c.    `y=1/9x+3-pi/54`

d.    `-48/pi`

e.    ` x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`

Show Worked Solution
 

a.  `g(pi/6)`
`= f(sin(pi/3))`  
  `= f(sqrt3/2)`  
  `= 3`  

 

b.  `g\ ^{prime}(x)` `= 2\cdot\ cos(pi/3)\cdot\ f\ ^{prime}(sin(pi/3))`  
`g\ ^{prime}(pi/6)` `= 2 xx 1/2 xx f\ ^{prime}(sqrt3/2)`  
  `= 1/9`  

 

c.   `m = 1/9`  and  `g(pi/6) = 3`

`y  –  y_1` `= m(x-x_1)`  
`y  –  3` `= 1/9(x-pi/6)`  
`y` `= 1/9x + 3-pi/54`  

♦♦ Mean mark (c) 45%.
MARKER’S COMMENT: Some students did not produce an equation as required.

  
d.   The average value of `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`

Average `= \frac{1}{\frac{\pi}{6}-\frac{\pi}{8}}\cdot\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} g^{\prime}(x) d x`  
  `=24/pi \cdot[g(x)]_{\frac{\pi}{8}}^{\frac{\pi}{\6}}`  
  `= 24/pi \cdot(f(sqrt3/2)-f(sqrt2/2))`  
  `= 24/pi (3-5) = -48/pi`  

♦♦ Mean mark (d) 30%.
MARKER’S COMMENT: Those who used the Average Value formula were generally successful.
Some students substituted `g^{\prime}(x)`, not `g(x)`.

e.   `2 \cos (2 x) f^{\prime}(\sin (2 x)) = 0`

`:.\   2 \cos (2 x) = 0\ ….(1)`  or  ` f^{\prime}(\sin (2 x)) = 0\ ….(2)`

(1):   ` 2 \cos (2 x)`  `= 0`      `x \in[0, \pi]`
`\cos (2 x)` `= 0`      `2 x \in[0,2 \pi]`
`2x` `= pi/2 , (3pi)/2`  
`x` `= pi/4 , (3pi)/4`  
     
(2): ` f^{\prime}(\sin (2 x)) ` `= sqrt2/2`  
`2x` `= pi/4 , (3pi)/4`  
`x` `= pi/8 , (3pi)/8`  

  
`:. \  x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`


♦♦ Mean mark (e) 30%.
MARKER’S COMMENT: Some students were able to find `pi/4, (3pi)/4`. Some solved `2 cos(2x)=0` or `f^{\prime}(sin(2x))=0` but not both.

Filed Under: Differentiation (Trig), Integration (Trig), Trig Differentiation, Trig Equations, Trig Integration Tagged With: Band 4, Band 5, Band 6, smc-725-10-Sin, smc-725-20-Cos, smc-736-10-sin, smc-736-20-cos, smc-737-10-sin, smc-737-20-cos, smc-737-50-Average Value, smc-737-60-Find f(x) given f'(x), smc-744-10-sin, smc-744-20-cos, smc-747-10-sin, smc-747-20-cos, smc-747-60-Average Value

Calculus, MET2 2007 VCAA 20 MC

The average value of the function  `y = tan (2x)`  over the interval  `[0, pi/8]`  is

  1. `2/pi log_e (2)`
  2. `pi/4`
  3. `1/2`
  4. `4/pi log_e 2`
  5. `8/pi`
Show Answers Only

`A`

Show Worked Solution
`y_text(average)` `= 1/(pi/8 – 0) int_0^(pi/8) (tan 2x)\ dx`
  `= 8/pi  int_0^(pi/8) (tan 2x)\ dx`
  `= (2 log_e (2))/pi`

`=>   A`

Filed Under: Average Value and Other, Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-50-Average Value, smc-747-60-Average Value, smc-756-20-Trig

Calculus, MET2 2012 VCAA 10 MC

The average value of the function  `f: [0, 2 pi] -> R,\ f(x) = sin^2(x)`  over the interval  `[0, a]`  is 0.4.

The value of `a`, to three decimal places, is

  1. `0.850`
  2. `1.164`
  3. `1.298`
  4. `1.339`
  5. `4.046`
Show Answers Only

`C`

Show Worked Solution
`1/(a – 0) int_0^a(sin^2x)\ dx` `= 0.4`
`[x- (sin 2x)/2]_0^a` `=0.4a`
`a-(sin 2a)/2` `=0.4a`
`:. a` `= 1.298, quad a∈ (0, 2pi)`

`=>   C`

 

Filed Under: Average Value and Other, Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-50-Average Value, smc-747-60-Average Value, smc-756-20-Trig

Calculus, MET2 2012 VCAA 7 MC

The temperature, `T^@C`, inside a building `t` hours after midnight is given by the function

`f: [0, 24] -> R,\ T(t) = 22 - 10\ cos (pi/12 (t - 2))`

The average temperature inside the building between 2 am and 2 pm is

  1. `10°text(C)`
  2. `12°text(C)`
  3. `20°text(C)`
  4. `22°text(C)`
  5. `32°text(C)`
Show Answers Only

`D`

Show Worked Solution

`text(Period) = (2pi)/n = (2pi)/(pi/12) = 24`

`text(At 2 am,)\ \ t=2,`

`T(2) = 22 – 10\ cos (0) = 12`

`text(At 2 pm,)\ \ t=14,`

`T(14) = 22 – 10\ cos (pi) = 32`

 

`text(Symmetry of graph means the average)`

`text(temperature occurs at)\ \ t=8:`

`T(8) = 22 – 10\ cos ((pi)/2) = 22`

`=>   D`

Filed Under: Average Value and Other, Integration (Trig), Trig Equations, Trig Integration Tagged With: Band 4, smc-725-20-Cos, smc-737-20-cos, smc-737-50-Average Value, smc-747-60-Average Value, smc-756-20-Trig

Copyright © 2014–2025 SmarterEd.com.au · Log in