SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2024 VCAA 3

The points shown on the chart below represent monthly online sales in Australia.

The variable \(y\) represents sales in millions of dollars.

The variable \(t\) represents the month when the sales were made, where \(t=1\) corresponds to January 2021, \(t=2\) corresponds to February 2021 and so on.

  1. A cubic polynomial \(p ;(0,12] \rightarrow R, p(t)=a t^3+b t^2+c t+d\) can be used to model monthly online sales in 2021.

    The graph of \(y=p(f)\) is shown as a dashed curve on the set of axes above.

    It has a local minimum at (2,2500) and a local maximum at (11,4400).

     i. Find, correct to two decimal places, the values of \(a, b, c\) and \(d\).   (3 mark)

    --- 5 WORK AREA LINES (style=lined) ---

    ii. Let \(q:(12,24] \rightarrow R, q(t)=p(t-h)+k\) be a cubic function obtained by translating \(p\), which can be used to model monthly online sales in 2022.

    Find the values of \(h\) and \(k\) such that the graph of \(y=q(t)\) has a local maximum at \((23,4750)\).   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Another function \(f\) can be used to model monthly online sales, where
     
    \(f:(0,36] \rightarrow R, f(t)=3000+30 t+700 \cos \left(\dfrac{\pi t}{6}\right)+400 \cos \left(\dfrac{\pi t}{3}\right)\)

    Part of the graph of \(f\) is shown on the axes below.

    1. Complete the graph of \(f\) on the set of axes above until December 2023, that is, for \(t \in(24,36]\).Label the endpoint at \(t=36\) with its coordinates.   (2 marks)

      --- 0 WORK AREA LINES (style=lined) ---

    1. The function \(f\) predicts that every 12 months, monthly online sales increase by \(n\) million dollars.

      Find the value of \(n\).   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Find the derivative \(f^{\prime}(t)\).   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Hence, find the maximum instantaneous rate of change for the function \(f\), correct to the nearest million dollars per month, and the values of \(t\) in the interval \((0,36]\) when this maximum rate occurs, correct to one decimal place.   (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

ai.   \(a\approx -5.21, b\approx 101.65, c\approx -344.03, d\approx 2823.18\)

aii.  \(h=12, k=350\)

bi.  

bii.  \( n=360\)

biii. \(f^{\prime}(t)=30-\dfrac{350\pi}{3}\sin\left(\dfrac{\pi t}{6}\right)-\dfrac{400\pi}{3}\sin\left(\dfrac{\pi t}{3}\right)\)

biv. \(\text{Maximum rate occurs at }t=10.2, 22.2, 34.2\)

\(\text{Maximum rate}\ \approx 725\ \text{million/month}\)

Show Worked Solution
ai.   \(\text{Given}\ p(2)=2500, p(11)=4400, p^{\prime}(2)=0\ \text{and}\ p^{\prime}(11)=0\) 
  
\(p(t)=at^3+bt^2+ct+d\ \Rightarrow\ p^{\prime}(t)=3at^2+2bt+c\)
  
\(\text{Using CAS:}\)
    
\(\text{Solve}
\begin{cases}
8a+4b+2c+d=2500 \\
1331a+121b+11c+d=4400 \\
12a+4b+c=0  \\
363a+22b+c=0
\end{cases}\)
  

\(a\approx -5.21, b\approx 101.65, c\approx -344.03, d\approx 2823.18\)

aii. \(\text{Local maximim }p(t)\ \text{is}\ (11, 4400)\)

\(\therefore\ h\) \(=23-11=12\)
\(k\) \(=4750-4400=350\)

 

bi.   \(\text{Plotting points from CAS:}\)

\((24,4820), (26, 3930), (28, 3290), (30, 3600), (32, 3410), (34, 4170), (36, 5180)\)

bii.  \(\text{Using CAS: }\)

\(f(12)-f(0)\) \(=4460-4100=360\)
\(f(24)-f(12)\) \(=4820-4460=360\)
\(f(36)-f(24)\) \(=5180-4820=360\) 

\(\therefore\ n=360\)

biii.  \(f(t)\) \(=3000+30t+700\cos\left(\dfrac{\pi t}{6}\right)+400\cos\left(\dfrac{\pi t}{3}\right)\)
  \(f^{\prime}(t)\) \(=30-\dfrac{700\pi}{6}\sin\left(\dfrac{\pi t}{6}\right)-\dfrac{400\pi}{3}\sin\left(\dfrac{\pi t}{3}\right)\)
    \(=30-\dfrac{350\pi}{3}\sin\left(\dfrac{\pi t}{6}\right)-\dfrac{400\pi}{3}\sin\left(\dfrac{\pi t}{3}\right)\)

  
biv.  \(\text{Max instantaneous rate of change occurs when }f^{\prime\prime}(t)=0\)

\(\text{Maximum rate occurs at }t=10.2, 22.2, 34.2\)

\(\text{Maximum rate using CAS:}\)

\(f^{\prime}(10.2)=f^{\prime}(22.2)=f^{\prime}(34.2)=725.396\approx 725\ \text{million/month}\)

Filed Under: Average Value and Other, Differentiation (Trig), Polynomials, Transformations, Trig Differentiation, Trig Graphing Tagged With: Band 3, Band 4, Band 5, smc-2757-70-Sketch graph, smc-721-10-Unique solution, smc-736-10-sin, smc-736-20-cos, smc-744-10-sin, smc-744-20-cos, smc-753-70-Polynomials, smc-756-20-Trig, smc-756-30-Polynomial

Calculus, MET2 2022 VCAA 5

Consider the composite function `g(x)=f(\sin (2 x))`, where the function `f(x)` is an unknown but differentiable function for all values of `x`.

Use the following table of values for `f` and `f^{\prime}`.

`\quad x \quad` `\quad\quad 1/2\quad\quad` `\quad\quad(sqrt{2})/2\quad\quad` `\quad\quad(sqrt{3})/2\quad\quad`
`f(x)` `-2` `5` `3`
`\quad\quad f^{prime}(x)\quad\quad` `7` `0` `1/9`

 

  1. Find the value of `g\left(\frac{\pi}{6}\right)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

The derivative of `g` with respect to `x` is given by `g^{\prime}(x)=2 \cdot \cos (2 x) \cdot f^{\prime}(\sin (2 x))`.

  1. Show that `g^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{9}`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the equation of the tangent to `g` at `x=\frac{\pi}{6}`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the average value of the derivative function `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Find four solutions to the equation `g^{\prime}(x)=0` for the interval `x \in[0, \pi]`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    `3`

b.    `1/9`

c.    `y=1/9x+3-pi/54`

d.    `-48/pi`

e.    ` x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`

Show Worked Solution
 

a.  `g(pi/6)`
`= f(sin(pi/3))`  
  `= f(sqrt3/2)`  
  `= 3`  

 

b.  `g\ ^{prime}(x)` `= 2\cdot\ cos(pi/3)\cdot\ f\ ^{prime}(sin(pi/3))`  
`g\ ^{prime}(pi/6)` `= 2 xx 1/2 xx f\ ^{prime}(sqrt3/2)`  
  `= 1/9`  

 

c.   `m = 1/9`  and  `g(pi/6) = 3`

`y  –  y_1` `= m(x-x_1)`  
`y  –  3` `= 1/9(x-pi/6)`  
`y` `= 1/9x + 3-pi/54`  

♦♦ Mean mark (c) 45%.
MARKER’S COMMENT: Some students did not produce an equation as required.

  
d.   The average value of `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`

Average `= \frac{1}{\frac{\pi}{6}-\frac{\pi}{8}}\cdot\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} g^{\prime}(x) d x`  
  `=24/pi \cdot[g(x)]_{\frac{\pi}{8}}^{\frac{\pi}{\6}}`  
  `= 24/pi \cdot(f(sqrt3/2)-f(sqrt2/2))`  
  `= 24/pi (3-5) = -48/pi`  

♦♦ Mean mark (d) 30%.
MARKER’S COMMENT: Those who used the Average Value formula were generally successful.
Some students substituted `g^{\prime}(x)`, not `g(x)`.

e.   `2 \cos (2 x) f^{\prime}(\sin (2 x)) = 0`

`:.\   2 \cos (2 x) = 0\ ….(1)`  or  ` f^{\prime}(\sin (2 x)) = 0\ ….(2)`

(1):   ` 2 \cos (2 x)`  `= 0`      `x \in[0, \pi]`
`\cos (2 x)` `= 0`      `2 x \in[0,2 \pi]`
`2x` `= pi/2 , (3pi)/2`  
`x` `= pi/4 , (3pi)/4`  
     
(2): ` f^{\prime}(\sin (2 x)) ` `= sqrt2/2`  
`2x` `= pi/4 , (3pi)/4`  
`x` `= pi/8 , (3pi)/8`  

  
`:. \  x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`


♦♦ Mean mark (e) 30%.
MARKER’S COMMENT: Some students were able to find `pi/4, (3pi)/4`. Some solved `2 cos(2x)=0` or `f^{\prime}(sin(2x))=0` but not both.

Filed Under: Differentiation (Trig), Integration (Trig), Trig Differentiation, Trig Equations, Trig Integration Tagged With: Band 4, Band 5, Band 6, smc-725-10-Sin, smc-725-20-Cos, smc-736-10-sin, smc-736-20-cos, smc-737-10-sin, smc-737-20-cos, smc-737-50-Average Value, smc-737-60-Find f(x) given f'(x), smc-744-10-sin, smc-744-20-cos, smc-747-10-sin, smc-747-20-cos, smc-747-60-Average Value

Calculus, MET2 2022 VCAA 2

On a remote island, there are only two species of animals: foxes and rabbits. The foxes are the predators and the rabbits are their prey.

The populations of foxes and rabbits increase and decrease in a periodic pattern, with the period of both populations being the same, as shown in the graph below, for all `t \geq 0`, where time `t` is measured in weeks.

One point of minimum fox population, (20, 700), and one point of maximum fox population, (100, 2500), are also shown on the graph.

The graph has been drawn to scale.
 

The population of rabbits can be modelled by the rule `r(t)=1700 \sin \left(\frac{\pi t}{80}\right)+2500`.

  1.   i. State the initial population of rabbits.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  ii. State the minimum and maximum population of rabbits.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. iii. State the number of weeks between maximum populations of rabbits.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

The population of foxes can be modelled by the rule `f(t)=a \sin (b(t-60))+1600`.

  1. Show that `a=900` and `b=\frac{\pi}{80}`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the maximum combined population of foxes and rabbits. Give your answer correct to the nearest whole number.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. What is the number of weeks between the periods when the combined population of foxes and rabbits is a maximum?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

The population of foxes is better modelled by the transformation of `y=\sin (t)` under `Q` given by
 

  1. Find the average population during the first 300 weeks for the combined population of foxes and rabbits, where the population of foxes is modelled by the transformation of `y=\sin(t)` under the transformation `Q`. Give your answer correct to the nearest whole number.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Over a longer period of time, it is found that the increase and decrease in the population of rabbits gets smaller and smaller.

The population of rabbits over a longer period of time can be modelled by the rule

`s(t)=1700cdote^(-0.003t)cdot sin((pit)/80)+2500,\qquad text(for all)\ t>=0`

  1. Find the average rate of change between the first two times when the population of rabbits is at a maximum. Give your answer correct to one decimal place.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the time, where `t>40`, in weeks, when the rate of change of the rabbit population is at its greatest positive value. Give your answer correct to the nearest whole number.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Over time, the rabbit population approaches a particular value.
  4. State this value.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

ai.   `r(0)=2500`

aii.  Minimum population of rabbits `= 800`

Maximum population of rabbits `= 4200`

aiii. `160`  weeks

b.    See worked solution.

c.    `~~ 5339` (nearest whole number)

d.    Weeks between the periods is 160

e.    `~~ 4142` (nearest whole number)

f.    Average rate of change `=-3.6` rabbits/week (1 d.p.)

g.    `t = 156` weeks (nearest whole number)  

h.    ` s → 2500`

Show Worked Solution

ai.  Initial population of rabbits

From graph when `t=0, \ r(0) = 2500`

Using formula when `t=0`

`r(t)` `= 1700\ sin \left(\frac{\pi t}{80}\right)+2500`  
`r(0)` `= 1700\ sin \left(\frac{\pi xx 0}{80}\right)+2500 = 2500`  rabbits  


aii.
From graph,

Minimum population of rabbits `= 800`

Maximum population of rabbits `= 4200`

OR

Using formula

Minimum is when `t = 120`

`r(120) = 1700\ sin \left(\frac{\pi xx 120}{80}\right)+2500 = 1700 xx (-1) + 2500 = 800`

Maximum is when `t = 40`

`r(40) = 1700\ sin \left(\frac{\pi xx 40}{80}\right)+2500 = 1700 xx (1) + 2500 = 4200`

 
aiii. Number of weeks between maximum populations of rabbits `= 200-40 = 160`  weeks

 
b.  Period of foxes = period of rabbits = 160:

`frac{\2pi}{b} = 160`

`:.\  b = frac{\2pi}{160} = frac{\pi}{80}` which is the same period as the rabbit population.

Using the point `(100 , 2500)`

Amplitude when `b = frac{\pi}{80}`: 

`f(t)` `=a \ sin (pi/80(t-60))+1600`  
`f(100)` `= 2500`  
`2500` `= a \ sin (pi/80(100-60))+1600`  
`2500` `= a \ sin (pi/2)+1600`  
`a` `= 2500-1600 = 900`  

 
`:.\  f(t)= 900 \ sin (pi/80)(t-60) + 1600`

  

c.    Using CAS find `h(t) = f(t) + r(t)`:

`h(t):=900 \cdot \sin \left(\frac{\pi}{80} \cdot(t-60)\right)+1600+1700\cdot \sin \left(\frac{\pit}{80}\right) +2500`

  
`text{fMax}(h(t),t)|0 <= t <= 160`      `t = 53.7306….`
  

`h(53.7306…)=5339.46`

  
Maximum combined population `~~ 5339` (nearest whole number)


♦♦ Mean mark (c) 40%.
MARKER’S COMMENT: Many rounding errors with a common error being 5340. Many students incorrectly added the max value of rabbits to the max value of foxes, however, these points occurred at different times.

d.    Using CAS, check by changing domain to 0 to 320.

`text{fMax}(h(t),t)|0 <= t <= 320`     `t = 213.7305…`
 
`h(213.7305…)=5339.4568….`
 
Therefore, the number of weeks between the periods is 160.
  

e.    Fox population:

`t^{\prime} = frac{90}{pi}t + 60`   →   `t = frac{pi}{90}(t^{\prime}-60)`

`y^{\prime} = 900y+1600`   →   `y = frac{1}{900}(y^{\prime}-1600)`

`frac{y^{\prime}-1600}{900} = sin(frac{pi(t^{\prime}-60)}{90})`

`:.\  f(t) = 900\ sin\frac{pi}{90}(t-60) + 1600`

  
Average combined population  [Using CAS]   
  
`=\frac{1}{300} \int_0^{300} left(\900 \sin \left(\frac{\pi(t-60)}{90}\right)+1600+1700\ sin\ left(\frac{\pi t}{80}\right)+2500\right) d t`
  

`= 4142.2646…..  ~~ 4142` (nearest whole number)


♦ Mean mark (e) 40%.
MARKER’S COMMENT: Common incorrect answer 1600. Some incorrectly subtracted `r(t)`. Others used average rate of change instead of average value.

f.   Using CAS

`s(t):= 1700e^(-0.003t) dot\sin\frac{pit}{80} + 2500`
 

`text{fMax}(s(t),t)|0<=t<=320`        `x = 38.0584….`
 

`s(38.0584….)=4012.1666….`
 

`text{fMax}(s(t),t)|160<=t<=320`     `x = 198.0584….`
 

`s(198.0584….)=3435.7035….`
 

Av rate of change between the points

`(38.058 , 4012.167)`  and  `(198.058 , 3435.704)`

`= frac{4012.1666….-3435.7035….}{38.0584….-198.0584….} =-3.60289….`
 

`:.` Average rate of change `=-3.6` rabbits/week (1 d.p.)


♦ Mean mark (f ) 45%.
MARKER’S COMMENT: Some students rounded too early.
`frac{s(200)-s(40)}{200-40}` was commonly seen.
Some found average rate of change between max and min populations.

g.   Using CAS

`s^(primeprime)(t) = 0` , `t = 80(n-0.049) \ \forall n \in Z`

After testing `n = 1, 2, 3, 4` greatest positive value occurs for `n = 2` 

`t` `= 80(n-0.049)`  
  `= 80(2-0.049)`  
  `= 156.08`  

 
`:. \ t = 156` weeks (nearest whole number)


♦♦♦ Mean mark (g) 25%.
MARKER’S COMMENT: Many students solved `frac{ds}{dt}=0`.
A common answer was 41.8, as `s(156.11…)=41.79`.
Another common incorrect answer was 76 weeks.

h.   As `t → ∞`, `e^(-0.003t) → 0`

`:.\ s → 2500`

Filed Under: Average Value and Other, Differentiation (Trig), Maxima and Minima, Trig Differentiation Tagged With: Band 2, Band 4, Band 5, Band 6, smc-2757-10-Sin, smc-2757-80-Applications, smc-641-60-Other themes, smc-736-10-sin, smc-744-10-sin, smc-753-60-Matrix, smc-756-20-Trig

Calculus, MET1 2022 VCAA 8

Part of the graph of `y=f(x)` is shown below. The rule `A(k)=k \ sin(k)` gives the area bounded by the graph of `f`, the horizontal axis and the line `x=k`.
 

  1. State the value of `A\left(\frac{\pi}{3}\right)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Evaluate `f\left(\frac{\pi}{3}\right)`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Consider the average value of the function `f` over the interval `x \in[0, k]`, where `k \in[0,2]`.
  4. Find the value of `k` that results in the maximum average value.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    ` (sqrt(3)pi)/6`

b.    `(3sqrt(3) +pi)/6`

c.    `k = pi/2`

Show Worked Solution
a.  `A(pi/3)` `= pi/3sin(pi/3)`  
  `= pi/3 xx sqrt(3)/2`  
  `= (sqrt(3)pi)/6`  
b.   `f(k)` `= A^{\prime}(k)`  
`f(k)` `=d/dx(k\ sin\ k)`  
  `= sin\ k + k\ cos\ k`  
`f(pi/3)` `= sin\ pi/3 + pi/3\ cos\ pi/3`  
  `= sqrt(3)/2 + pi/3 xx 1/2`  
  `= sqrt(3)/2 + pi/6`  
  `=(3sqrt(3) +pi)/6`  

♦♦♦ Mean mark (b) 25%.
MARKER’S COMMENT: Common error was giving derivative of `A(k)` as `k\ cos (k)`.
c.   Average value `= (A(k))/k`  
  `= 1/k(int_0^k f(x) d x)`  
  `= 1/k[x\ sin (x)]_0^k`  
  `= 1/k[k\ sin (k)] = sin\ k`  

 
`:.` Average value has a maximum value of 1 when `k = pi/2`


♦♦♦ Mean mark (c) 25%.
MARKER’S COMMENT: Students often chose unnecessarily complicated methods or inconsistently applied nomenclature when attempting this question.

Filed Under: Average Value and Other, Differentiation (Trig), Trig Differentiation Tagged With: Band 4, Band 6, smc-736-10-sin, smc-736-40-Product Rule, smc-744-10-sin, smc-756-20-Trig

Calculus, MET1 2006 ADV 2aii

Differentiate with respect to `x`:

Let  `y=sin x/(x + 1)`.  Find  `dy/dx `.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`dy/dx = {cos x (x + 1)-sin x} / (x + 1)^2`

Show Worked Solution

`y = sinx/(x + 1)`

`d/dx (u/v) = (u^{\prime} v-uv^{\prime})/v^2`

`u` `= sin x` `v` `= x + 1`
`u^{\prime}` `= cos x` `\ \ \ v^{\prime}` `= 1`

 

`:.dy/dx = {cos x (x + 1)-sin x} / (x + 1)^2`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 3, smc-736-10-sin, smc-736-50-Quotient Rule, smc-744-10-sin, smc-744-50-Quotient Rule

Calculus, MET1 2007 ADV 2aii

Let  `y=xsinx.`  Evaluate  `dy/dx`  for  `x=pi`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`-pi`

Show Worked Solution

`y = x sin x`

`(dy)/(dx)` `= x xx d/(dx) (sin x) + d/(dx) (x) xx sin x`
  `= x  cos x + sin x`

 
`text(When)\ \ x = pi,`

`(dy)/(dx)` `= pi xx cos pi + sin pi`
  `= pi (-1) + 0`
  `=-pi`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-40-Product Rule, smc-744-10-sin, smc-744-40-Product Rule

Calculus, MET1 2020 VCAA 1a

Let  `y = x^2 sin(x)`.

Find  `(dy)/(dx)`.   (1 mark)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

`2x sin(x) + x^2 cosx`

Show Worked Solution

`(dy)/(dx) = 2x sin(x) + x^2 cosx`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 3, smc-736-10-sin, smc-736-40-Product Rule, smc-744-10-sin, smc-744-40-Product Rule

Calculus, MET1 2019 VCAA 1b

Let  `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.

Evaluate  `g^{prime}(1)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`-pi/2`

Show Worked Solution
  `u = sin(pi x)` `v = x + 1`
  `u^{prime}=pi cos(pi x)` `v^{prime}=1`

 

`g^{prime}(x)` `=(vu^{prime}-uv^{prime})/v^2`
  `= ((x + 1) ⋅ pi cos(pi x)-sin (pi x))/(x + 1)^2`
`g^{prime}(1)` `= (2 pi cos(pi)-sin(pi))/2^2`
  `= (2 pi(-1)-0)/4`
  `= -pi/2`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-50-Quotient Rule, smc-736-60-Chain Rule, smc-744-10-sin, smc-744-50-Quotient Rule, smc-744-60-Chain Rule

Calculus, MET1 2011 VCAA 1b

If  `g(x) = x^2 sin (2x)`,  find  `g^{prime}(pi/6).`   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(sqrt 3 pi)/6 + pi^2/36`

Show Worked Solution

`g(x) = x^2 sin (2x)`

MARKER’S COMMENT: Incorrect determination of exact trig values lost many students marks here.

`text(Using Product Rule:)`

`(fh)^{prime}` `= f^{prime} h + fh^{prime}`
`g^{prime}(x)` `= 2 x sin (2x) + 2x^2 cos (2x)`
   
`:. g^{prime}(pi/6)` `= 2 (pi/6) sin (pi/3) + 2 (pi/6)^2 cos (pi/3)`
  `= pi/3 xx sqrt 3/2 + pi^2/18 xx 1/2`
  `= (sqrt 3 pi)/6 + pi^2/36`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-40-Product Rule, smc-744-10-sin, smc-744-40-Product Rule

Calculus, MET1 2012 VCAA 1b

If  `f(x) = x/(sin(x))`,  find  `f^{prime}(pi/2).`   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`1`

Show Worked Solution

`text(Using Quotient Rule:)`

`(h/g)^{prime}` `= (h^{prime}g-h g^{prime})/g^2`
`f^{prime}(x)` `= (1 xx sin (x)-x cos (x))/(sin x)^2`
`:. f^{prime}(pi/2)` `= (sin (pi/2)-pi/2 xx cos (pi/2))/(sin(pi/2))^2`
  `= (1-0)/1^2`
  `= 1`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-50-Quotient Rule, smc-744-10-sin, smc-744-50-Quotient Rule

Calculus, MET1 SM-Bank 20

If   `f(x)= 2 sin 3x - 3 tan x`, find  `f^{prime}(0)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`3`

Show Worked Solution
`y` `= 2 sin 3x-3 tan x`
`(dy)/(dx)` `= 6 cos 3x-3 sec^2 x`

  
`text(When)\ \ x = 0,`

`(dy)/(dx)` `= 6 cos 0-3 sec^2 0`
  `= 6 (1)-3/(cos^2 0)`
  `= 6-3`
  `= 3`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-30-tan, smc-736-60-Chain Rule, smc-744-10-sin, smc-744-30-tan, smc-744-60-Chain Rule

Calculus, MET1 2016 VCAA 6a

Let  `f : [-pi,  pi] → R`, where  `f (x) = 2 sin (2x)-1`.

Calculate the average rate of change of  `f` between  `x = -pi/3`  and  `x = pi/6`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(4sqrt3)/pi`

Show Worked Solution

`text(Average rate of change)`

`= (f(pi/6)-f(-pi/3))/(pi/6-(-pi/3))`

`= [(2sin(pi/3)-1)-(2sin(-(2pi)/3)-1)] xx 2/pi`

`= [(2 xx (sqrt3)/2-1)-(2 xx (-sqrt3)/2-1)] xx 2/pi`

♦ Mean mark 48%.
MARKER’S COMMENT: Evaluating  `f(-pi/3)` caused significant problems here.

`= (sqrt3-1 + sqrt3 + 1) xx 2/pi`

`= (4sqrt3)/pi`

 

 

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 5, smc-736-80-Average ROC, smc-744-10-sin, smc-744-80-Average ROC

Calculus, MET1 2007 VCAA 1

Let  `f(x) = (x^3)/(sin(x))`. Find  `f^{′}(x)`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`(3x^2sin(x)-x^3cos(x))/(sin^2(x))`

Show Worked Solution

`f(x) = (x^3)/(sin(x))`

`text(Using Quotient Rule:)`

`d/(dx)(u/v) = (vu^{prime}-uv^{prime})/(v^2)`

`:. f^{prime}(x) = (3x^2sin(x)-x^3cos(x))/(sin^2(x))`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 3, smc-736-10-sin, smc-736-50-Quotient Rule, smc-744-10-sin, smc-744-50-Quotient Rule

Calculus, MET1 2014 VCAA 1a

If  `y = x^2sin(x)`, find  `(dy)/(dx)`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`2xsin(x) + x^2cos(x)`

Show Worked Solution

`text(Using product rule:)`

MARKER’S COMMENT: Factorising your answer is not necessary.
`(fg)^{prime}` `= f^{prime}g + fg^{prime}`
`:. (dy)/(dx)` `= 2xsin(x) + x^2cos(x)`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 2, smc-736-10-sin, smc-736-40-Product Rule, smc-744-10-sin, smc-744-40-Product Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in