Find the value of `int_0^3 (8x)/(1 + x^2)\ dx` in the form `a log_e(b)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the value of `int_0^3 (8x)/(1 + x^2)\ dx` in the form `a log_e(b)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`4log_e 10`
`int_0^3 (8x)/(1 + x^2)\ dx`
`= 4 int_0^3 (2x)/(1 + x^2)\ dx`
`= 4[log_e (1 + x^2)]_0^3`
`= 4[log_e(1 + 9)-log_e(1 + 0)]`
`= 4[log_e 10-log_e 1]`
`= 4log_e 10`
If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
`D`
| `int_1^3 (2)/(x)\ dx` | `= [2 log_e x]_1^3` |
| `m` | `= 2 log_e 3 – 2 log_e 1` |
| `m` | `= 2 log_e 3` |
| `e^(2 log_e 3)` | `= e^(log_e 9)` |
| `= 9` |
`=>D`
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
| a. | `int_2^7 1/(x + sqrt 3)\ dx` | `= [log_e (x + sqrt 3)]_2^7` |
| `= log_e(7 + sqrt 3)-log_e (2 + sqrt 3)` | ||
| `= log_e ((7 + sqrt 3)/(2 + sqrt 3))` |
| `int_2^7 1/(x-sqrt 3)\ dx` | `= [log_e (x – sqrt 3)]_2^7` |
| `= log_e (7-sqrt 3)-log_e (2-sqrt 3)` | |
| `= log_e ((7-sqrt 3)/(2-sqrt 3))` |
| b. | `1/2(1/(x-sqrt 3) + 1/(x + sqrt 3))` | `= 1/2 ((x + sqrt 3 + x-sqrt 3)/((x-sqrt 3)(x + sqrt 3)))` |
| `= 1/2 ((2x)/(x^2-3))` | ||
| `= x/(x^2-3)\ \ text(… as required)` |
| c. | `int_2^7 x/(x^2-3)` | `= 1/2 int_2^7 1/(x-sqrt 3) + 1/(x + sqrt 3)\ dx` |
| `= 1/2[log_e ((7-sqrt 3)/(2-sqrt 3)) + log_e ((7 + sqrt 3)/(2 + sqrt 3))]` | ||
| `= 1/2 log_e (((7-sqrt 3)(7 + sqrt 3))/((2-sqrt 3)(2 + sqrt 3)))` | ||
| `= 1/2 log_e ((49-3)/(4-3))` | ||
| `= 1/2 log_e 46` |
Let `y = x log_e(3x).`
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. `text(Using Product Rule:)`
| `(hg)^{prime}` | `= h^{prime} g + h g^{prime}` |
| `:. (dy)/(dx)` | `= 1 xx log_e (3x) + x (3/(3x))` |
| `= log_e (3x) + 1` |
b. `text(Using Integration by Recognition:)`
`int (log_e(3x) + 1) dx = x log_e (3x)`
`:. int_1^2 (log_e (3x) + 1) dx`
`= [x log_e (3x)]_1^2`
`= (2 log_e (6))-(log_e(3))`
`= log_e(6^2)-log_e(3)`
`= log_e (36/3)`
`= log_e(12)`
Let `k = int_-2^-1 1/x\ dx`, then `e^k` is equal to
`E`
`text(The integral can be seen as the negative)`
`text(equivalent of the area under)\ \ y=1/x`
`text(between)\ \ x=1 and x=2.`
| `k` | `= – [log_e x]_1^2` |
| `=-(log_e(2)-log_e(1))` | |
| `= – log_e (2)` | |
| `= log_e (1/2)` | |
| `:. e^k` | `= e^(log_e(1/2))` |
| `= 1/2` |
`=> E`
Find the value of `int_e^(e^3) 5/x` with respect to `x`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`10`
`int_e^(e^3) 5/x\ dx`
`= 5 int_e^(e^3) 1/x\ dx`
`= 5[lnx]_e^(e^3)`
`= 5(ln e^3-ln e)`
`= 5(3-1)`
`= 10`
Let `int_1^4 1/(3x)\ dx = a log_e(b).`
Find the value of `a` and `b`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`a=1/3,\ \ b=4`
`int_1^4 1/(3x) dx`
`= 1/3[lnx]_1^4`
`= 1/3[ln4-ln1]`
`= 1/3ln4`
`:. a=1/3,\ \ b=4\ \ text(or)\ \ a=2/3,\ \ b=2`
Let `f` be a differentiable function defined for `x > 2` such that
`int_3^(ab + 2) f (x)\ dx = int_3^(a + 2) f(x)\ dx + int_3^(b + 2) f(x)\ dx` where `a > 1 and b > 1.`
The rule for `f (x)` is
`E`
`text(Solution 1)`
`text(Consider option)\ E:`
| `int_3^(ab + 2) (1/(x-2))\ dx` | `= int_3^(a + 2) (1/(x-2))\ dx + int_3^(b + 2) (1/(x-2))\ dx` |
| `[log_e (x-2)]_3^(ab+2)` | `=[log_e (x-2)]_3^(a+2) + [log_e (x-2)]_3^(b+2)` |
| `log_e(ab)-log_e1` | `=(log_e a-log_e1) + (log_e b-log_e1)` |
| `log_e(ab)` | `=log_e a + log_e b` |
`text(Solution 2)`
`text(Define each specific function)`
`(text{i.e.}\ \ f(x) = 1/(x – 2))`
`text(Enter functional equation until)`
`text(CAS output is “true”.)`
`=> E`
Let `int_4^5 2/(2x-1) dx = log_e(b)`.
Find the value of `b`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`9/7`
| `2 int_4^5(2x-1)^(-1)dx` | `= 2/2[log_e|\ 2x-1\ |]_4^5` |
| `= (log_e(9)-log_e(7))` | |
| `= log_e(9/7)` |
`:. b = 9/7`