SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2020 VCAA 7 MC

If  `f(x)=e^(g(x^(2)))`, where `g` is a differentiable function, then  `f^(')(x)`  is equal to

  1. `2xe^(g(x^(2)))`
  2. `2xg(x^(2))e^(g(x^(2)))`
  3. `2xg^(')(x^(2))e^(g(x^(2))`
  4. `2xg^(')(2x)e^(g(x^(2)))`
  5. `2xg^(')(x^(2))e^(g(2x))`
Show Answers Only

`C`

Show Worked Solution

`f(x)=e^(g(x^2))`

`text{Using the chain rule (twice):}`

`f^{‘}(x)` `=d/dx[g(x^2)] * e^(g(x^2))`  
  `=2x*g^{‘}(x^2)*e^(g(x^2))`  

 
`=> C`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-30-Logs, smc-739-90-Functional equations, smc-745-50-Chain Rule, smc-745-70-Functional equations

Calculus, MET1 2021 VCAA 1a

Differentiate  `y = 2e^(-3x)` with respect to  `x`.   (1 mark)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`-6e^(-3x)`

Show Worked Solution
`y` `=2e^(-3x)`  
`dy/dx` `=-3 xx 2e^(-3x)`  
  `=-6e^(-3x)`  

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-10-Exponential, smc-739-60-Chain Rule, smc-745-10-Exponential, smc-745-50-Chain Rule

Calculus, MET1 2013 VCAA 1b

Let  `f(x) = e^(x^2)`.

Find  `f^{\prime} (3)`.   (3 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`6e^9`

Show Worked Solution

`text(Using Chain Rule:)`

`f^{\prime} (x)` `= 2xe^(x^2)`
`f^{\prime} (3)` `= 2 (3) e^((3)^2)`
  `= 6e^9`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-10-Exponential, smc-739-60-Chain Rule, smc-745-10-Exponential, smc-745-50-Chain Rule

Calculus, MET1 2010 VCAA 1b

For  `f(x) = log_e (x^2 + 1)`,  find  `f^{\prime}(2)`.    (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`4/5`

Show Worked Solution

`text(Using Chain Rule:)`

`f ^{\prime}(x)` `= (2x)/(x^2 + 1)`
`:. f ^{\prime}(2)` `= (2(2))/(2^2 + 1)`
  `= 4/5`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-60-Chain Rule, smc-745-20-Logs, smc-745-50-Chain Rule

Calculus, MET1 2020 VCAA 1b

Evaluate  `f^{\prime}(1)`, where  `f: R -> R, \ f(x) = e^(x^2-x + 3)`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`e^3`

Show Worked Solution
`f(x)` `= e^(x^2-x + 3)`
`f^{\prime}(x)` `= (2x-1)e^(x^2-x + 3)`
`f^{\prime}(1)` `= (2-1)e^(1-1 + 3)`
  `= e^3`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-10-Exponential, smc-739-60-Chain Rule, smc-745-10-Exponential, smc-745-50-Chain Rule

Calculus, MET1 2008 VCAA 1b

Let  `f(x) = xe^(3x)`.  Evaluate  `f^{prime}(0)`.   (3 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`1`

Show Worked Solution

`text(Using Product Rule:)`

`(gh)^{prime} = g^{prime}h + gh^{prime}`

`f^{prime}(x)` `= x(3e^(3x)) + 1 xx e^(3x)`
`:.f^{prime}(0)` `= 0 + e^0`
  `= 1`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-10-Exponential, smc-739-40-Product Rule, smc-745-10-Exponential, smc-745-30-Product Rule, smc-745-50-Chain Rule

Calculus, MET1 2015 ADV 11e

Differentiate  `(e^x + x)^5`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`5(e^x + 1)(e^x + x)^4`

Show Worked Solution
`y` `= (e^5 + x)^5`
`(dy)/(dx)` `= 5(e^x + x)^4 xx d/(dx)(e^x + x)`
  `= 5(e^x + x)^4 xx (e^x + 1)`
  `= 5(e^x + 1)(e^x + x)^4`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-10-Exponential, smc-739-60-Chain Rule, smc-745-10-Exponential, smc-745-50-Chain Rule

Calculus, MET2 2011 VCAA 4 MC

The derivative of  `log_e(2f(x))`  with respect to `x` is

  1. `(f′(x))/(f(x))`
  2. `2(f′(x))/(f(x))`
  3. `(f′(x))/(2f(x))`
  4. `log_e(2f′(x))`
  5. `2log_e(2f′(x))`
Show Answers Only

`A`

Show Worked Solution

`text(Chain Rule:)`

`text(If)\ \ h(x)` `= f(g(x))`
`h′(x)` `= f′(g(x)) xx g′(x)`
`d/(dx)(log_e(2f(x)))` `= 1/(2f(x)) xx 2f′(x)`
  `= (f′(x))/(f(x))`

`=> A`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-30-Logs, smc-739-60-Chain Rule, smc-745-20-Logs, smc-745-50-Chain Rule

Calculus, MET1 2007 VCAA 2b

Let  `g(x) = log_e(tan(x))`.  Evaluate `g^{prime}(pi/4)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`g^{prime}(pi/4) = 2`

Show Worked Solution

`g(x) = log_e (tan(x))`

`text(Using Chain Rule:)`

`g^{prime}(x) = (sec^2(x))/(tan(x))`

`text(When)\ \ x = pi/4,`

`g^{prime}(pi/4)` `= (sec^2(pi/4))/(tan (pi/4))`
  `=1/(1/sqrt2)^2`
  `=1/(1/2)`
  `=2`

Filed Under: Differentiation (L&E), Differentiation (Trig), L&E Differentiation, Trig Differentiation Tagged With: Band 4, smc-736-30-tan, smc-736-60-Chain Rule, smc-739-30-Logs, smc-739-80-Trig overlap, smc-744-30-tan, smc-744-70-Log/Exp Overlap, smc-745-20-Logs, smc-745-50-Chain Rule, smc-745-60-Trig Overlap

Copyright © 2014–2025 SmarterEd.com.au · Log in