Let `y = x tan(x)`. Evaluate `(dy)/(dx)` when `x = pi/6`. (3 mark)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `y = x tan(x)`. Evaluate `(dy)/(dx)` when `x = pi/6`. (3 mark)
--- 7 WORK AREA LINES (style=lined) ---
`(3sqrt3 + 2pi)/9`
`text(Using the product rule:)`
`d/(dx)(uv)` | `= u^{prime}v + uv^{prime}` |
`(dy)/(dx)` | `= tan(x) + x/(cos^2(x))` |
`text(When)\ x = pi/6,`
`(dy)/(dx)` | `= tan(pi/6) + (pi/6)/((cos(pi/6))^2)` |
`= 1/sqrt3 + pi/6 xx (2/sqrt3)^2` | |
`= sqrt3/3 + (4pi)/18` | |
`= (3sqrt3 + 2pi)/9` |
Let `f(x)=(1 + tan x)^10.` Find `f^{\prime}(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`10 sec^2 x \ (1 + tan x)^9`
`f(x) = (1 + tan x)^10`
`f^{\prime}(x)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
Differentiate with respect to `x`:
Let `f(x)=x tan x`. Find `f^{prime}(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`f^{prime}(x) = x sec^2 x + tan x `
`y = x tan x`
`text(Using product rule)`
`f^{prime} (uv)` | `= u^{prime}v + uv ^{prime}` |
`:.f^{prime}(x)` | `= tan x + x xx sec^2 x` |
`= x sec^2 x + tan x` |
If `f(x)= 2 sin 3x - 3 tan x`, find `f^{prime}(0)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3`
`y` | `= 2 sin 3x-3 tan x` |
`(dy)/(dx)` | `= 6 cos 3x-3 sec^2 x` |
`text(When)\ \ x = 0,`
`(dy)/(dx)` | `= 6 cos 0-3 sec^2 0` |
`= 6 (1)-3/(cos^2 0)` | |
`= 6-3` | |
`= 3` |
Let `g(x) = log_e(tan(x))`. Evaluate `g^{prime}(pi/4)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`g^{prime}(pi/4) = 2`
`g(x) = log_e (tan(x))`
`text(Using Chain Rule:)`
`g^{prime}(x) = (sec^2(x))/(tan(x))`
`text(When)\ \ x = pi/4,`
`g^{prime}(pi/4)` | `= (sec^2(pi/4))/(tan (pi/4))` |
`=1/(1/sqrt2)^2` | |
`=1/(1/2)` | |
`=2` |