Find the value of `int_0^3 (8x)/(1 + x^2)\ dx` in the form `a log_e(b)`. (2 marks)
Algebra, MET2-NHT 2019 VCAA 7 MC
If `m = int_1^3 (2)/(x)\ dx`, then the value of `e^m` is
- `log_e (9)`
- `–9`
- `(1)/(9)`
- `9`
- `–(1)/(9)`
Calculus, MET1-NHT 2019 VCAA 3
- Evaluate `int_2^7 1/(x + sqrt 3)\ dx` and `int_2^7 1/(x - sqrt 3)\ dx`. (2 marks)
- Show that `1/2 (1/(x - sqrt 3) + 1/(x + sqrt 3)) = x/(x^2 - 3)`. (1 mark)
- Use your answers to part a. and part b. to evaluate `int_2^7 x/(x^2 - 3)\ dx` in the form `1/a log_e(b)`, where `a` and `b` are positive integers. (1 mark)
Calculus, MET1 2017 VCAA 2
Let `y = x log_e(3x).`
- Find `(dy)/(dx)`. (2 marks)
- Hence, calculate `int_1^2 (log_e(3x) + 1) dx`. Express your answer in the form `log_e(a)`, where `a` is a positive integer. (2 marks)
Calculus, MET2 2007 VCAA 9 MC
Let `k = int_-2^-1 1/x\ dx`, then `e^k` is equal to
- `log_e(2)`
- `1`
- `2`
- `e`
- `1/2`
Calculus, MET1 2011 ADV 4b
Find the value of `int_e^(e^3) 5/x` with respect to `x` (2 marks)
Calculus, MET1 2012 ADV 9
Let `int_1^4 1/(3x)\ dx = a log_e(b).`
Find the value of `a` and `b`. (2 marks)
Calculus, MET2 2010 VCAA 22 MC
Let `f` be a differentiable function defined for `x > 2` such that
`int_3^(ab + 2) f (x)\ dx = int_3^(a + 2) f(x)\ dx + int_3^(b + 2) f(x)\ dx` where `a > 1 and b > 1.`
The rule for `f (x)` is
- `sqrt (x - 2)`
- `log_e (x - 2)`
- `sqrt (2x - 4)`
- `log_e (2x - 2)`
- `1/(x - 2)`
Calculus, MET1 2014 VCAA 2
Let `int_4^5 2/(2x - 1) dx = log_e(b)`.
Find the value of `b`. (2 marks)