If \( { \displaystyle \int_a^b f(x) d x=-5 } \) and \( { \displaystyle \int_a^c f(x) d x=3 } \), where \(a<b<c\), then \( { \displaystyle \int_b^c 2 f(x) d x } \) is equal to
- \(-16\)
- \(16\)
- \(-4\)
- \(4\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
If \( { \displaystyle \int_a^b f(x) d x=-5 } \) and \( { \displaystyle \int_a^c f(x) d x=3 } \), where \(a<b<c\), then \( { \displaystyle \int_b^c 2 f(x) d x } \) is equal to
\(B\)
\({ \displaystyle \int_a^b f(x) d x} +{ \displaystyle \int_b^c f(x) d x}={ \displaystyle \int_a^c f(x) d x} \)
\(-5+{ \displaystyle \int_b^c f(x) d x}=3\)
\({ \displaystyle \int_b^c f(x) d x}=3+5=8\)
\(\therefore{ \displaystyle \int_b^c 2f(x) d x}=16\)
\(\Rightarrow B\)
Jac and Jill have built a ramp for their toy car. They will release the car at the top of the ramp and the car will jump off the end of the ramp. The cross-section of the ramp is modelled by the function \(f\), where \(f(x)= \begin{cases}\displaystyle \ 40 & 0 \leq x<5 \\ \dfrac{1}{800}\left(x^3-75 x^2+675 x+30\ 375\right) & 5 \leq x \leq 55\end{cases}\) \(f(x)\) is both smooth and continuous at \(x=5\). The graph of \(y=f(x)\) is shown below, where \(x\) is the horizontal distance from the start of the ramp and \(y\) is the height of the ramp. All lengths are in centimetres. --- 2 WORK AREA LINES (style=lined) --- --- 1 WORK AREA LINES (style=lined) --- --- 1 WORK AREA LINES (style=lined) --- --- 1 WORK AREA LINES (style=lined) --- Jac and Jill decide to use two trapezoidal supports, each of width \(10 cm\). The first support has its left edge placed at \(x=5\) and the second support has its left edge placed at \(x=15\). Their cross-sections are shown in the graph below. --- 5 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=lined) --- --- 6 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- a. \(f^{\prime}(x)= \begin{cases}\displaystyle \ 0 & 0 < x<5 \\ \dfrac{1}{800}\left(3x^2-150 x+675 \right) & 5 \leq x < 55\end{cases}\) b.i \((25, 20)\) b.ii \([25, 55]\) b.iii \([5, 25]\) c. \(98.1\%\) d. \(\text{In the interval }x\in [25, q]\text{ the curve is concave up.}\) \(\therefore\ \text{The sloped edges of the trapeziums would be above }f(x)\) \(\text{making the trapezium rule approximation greater than the}\) \(\text{actual area.}\) e.i \(b=8.75, c=-283.4375\) e.ii \(34.10\ \text{cm}\) a. \(\text{Using CAS: Define f(x) then}\) \(\text{OR}\quad f^{\prime}(x)= \begin{cases}\displaystyle \ 0 & 0 < x<5 \\ \dfrac{1}{800}\left(3x^2-150 x+675 \right) & 5 \leq x < 55\end{cases}\) b.i \(\text{Using CAS: Find }f^”(x)\ \text{then solve }=0\) \(\therefore\ \text{Point of inflection at }(25, 20)\) b.ii \(\text{Gradient function strictly increasing for }x\in [25, 55]\) b.iii \(\text{Gradient function strictly decreasing for }x\in [5, 25]\) c. \(\text{Using CAS:}\)
\(\therefore\ \text{The sloped edges of the trapeziums would be above }f(x)\) \(\text{making the trapezium rule approximation greater than the}\) \(\text{actual area.}\) e.i \(f(55)=\dfrac{35}{4}\ \text{(Using CAS)}\) \(\text{and }f(55)=g(55)\rightarrow g(55)=\dfrac{35}{4}\) \(\text{and }g'(55)=f'(55)\) \(\rightarrow\ f'(55)=\dfrac{1}{800}(3\times 55^2-150\times 55+675)=\dfrac{15}{8}\) \(\rightarrow\ -\dfrac{55}{8}+b=\dfrac{15}{8}\) \(\therefore b=\dfrac{35}{4}\quad (2)\) \(\text{Sub (2) into (1)}\) \(c=\dfrac{3165}{16}-55\times\dfrac{35}{4}\) \(c=-\dfrac{4535}{16}\) \(\therefore\ b=\dfrac{35}{4}\ \text{or}\ 8.75 , c=-\dfrac{4535}{16}\ \text{or}\ -283.4375\) e.ii \(\text{Using CAS: Solve }g(x)=0|x>55\) \(\text{Horizontal distance}=\sqrt{365}+70-55=34.104\dots\approx 34.10\ \text{cm (2 d.p.)}\)
\(\text{Area}\)
\(=\dfrac{h}{2}\Big(f(5)+2f(15)+f(25)\Big)\)
\(=\dfrac{10}{2}\Big(40+2\times 33.75+20\Big)=637.5\)
\(\therefore\ \text{Estimate:Exact}\)
\(=637.5:650\)
\(=\dfrac{637.5}{650}\times 100\)
\(=98.0769\%\approx 98.1\%\)
d. \(\text{In the interval }x\in [25, q]\text{ the curve is concave up.}\)
\(\therefore -\dfrac{1}{16}\times 55^2+55b+c\)
\(=\dfrac{35}{4}\)
\(c\)
\(=\dfrac{35}{4}+\dfrac{3025}{16}-55b\)
\(c\)
\(=\dfrac{3165}{16}-55b\quad (1)\)
\(g'(x)=-\dfrac{x}{8}+b\)
If `\int_0^b f(x)dx=10` and `\int_0^a f(x)dx=-4`, where `0<a<b`, then `\int_a^b f(x)dx` is equal to
`E`
`\int_0^b f(x)dx` | `=\int_0^a f(x)dx + \int_a^b f(x)dx` | |
`10` | `= -4 + \int_a^b f(x)dx` | |
`:.\ \int_a^b f(x)dx` | `= 10 + 4 = 14` |
`=>E`
A tilemaker wants to make square tiles of size 20 cm × 20 cm.
The front surface of the tiles is to be painted with two different colours that meet the following conditions:
An example is shown below.
There are two types of tiles: Type A and Type B.
For Type A, the colours on the tiles are divided using the rule `f(x)=4 \sin \left(\frac{\pi x}{10}\right)+a`, where `a \in R`.
The corners of each tile have the coordinates (0,0), (20,0), (20,20) and (0,20), as shown below.
--- 2 WORK AREA LINES (style=lined) ---
ii. Find the value of `a` so that a Type A tile meets Condition 1. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
Type B tiles, an example of which is shown below, are divided using the rule `g(x)=-\frac{1}{100} x^3+\frac{3}{10} x^2-2 x+10`.
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a.i. `400` cm²
a.ii. `a = 10`
b. `200` cm²
c. See worked solution
a.i Area | `= 20 xx 20` | |
`= 400` cm² |
a.ii `a = 10`
b. Area | `=\int_0^{20} \frac{-x^3}{100}+\frac{3 x^2}{10}-2 x+10\ d x` | |
`=\left[\frac{-x^4}{400}+\frac{x^3}{10}-x^2+10 x\right]_0^{20}` | ||
`=\left[-\frac{20^4}{400}+\frac{20^3}{10}-20^2+10 xx 20\right]-\left[0\right]` | ||
`= – 400 +800 -400 +200` | ||
`= 200` cm² |
`:.` The area of the coloured section of the Type B tile is 200 cm² which is half the 400 cm² area of the tile.
c. |
`f(0)` | `=4 \sin \left(\frac{\pi(0)}{10}\right)+10 = 10` | |
`f(20)` | `=4 \sin (2 \pi)+10 = 10` | ||
`g(0)` | `=\frac{-0}{100}+\frac{3(0)}{10}-2(0)+10=10` | ||
`g(20)` | `=-\frac{8000}{100}+\frac{200}{10}-2(20)+10 = 10` |
→`\ f(0) = f(20) = g(0) = g(20) =10`
`:.` The endpoints for `f(x)` are `(0,10)` and `(20,10)` and for `g(x)` are also `(0,10)` and `(20,10)`.
So the tiles can be placed in any order to make the continuous pattern.
Evaluate `\int_0^1(f(x)(2 f(x)-3))dx`, where `\int_0^1[f(x)]^2 dx=\frac{1}{5}` and `\int_0^1 f(x) dx=\frac{1}{3}`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-\frac{3}{5}`
`\int_0^1(f(x)(2 f(x)-3)) d x` | `=\int_0^1\left(2[f(x)]^2-3 f(x)\right) d x` | |
`=2 \int_0^1[f(x)]^2 d x-3 \int_0^1 f(x) d x` | ||
`=2 \cdot \frac{1}{5}-3 \cdot \frac{1}{3}` | ||
`=-\frac{3}{5}` |
If `int_0^a f(x)\ dx = k` , then `int_0^a (3 f(x) + 2)\ dx` is
`A`
`int_0^a (3 f(x) + 2)\ dx`
`= 3 int_0^a f(x)\ dx + int_0^a 2\ dx`
`= 3k + [2x]_0^a`
`= 3k + 2a`
`=> A`
Evaluate `int_1^4(sqrt x + 1)\ dx`. (3 marks)
`23/3`
`int_1^4 (x^(1/2) + 1)\ dx`
`= [2/3 x^(3/2) + x]_1^4`
`= (2/3 xx (sqrt4)^3 + 4) – (2/3 + 1)`
`=(2/3 xx 8 +4) – 5/3`
`= 23/3`
If `int_1^12 g(x)\ dx = 5` and `int_12^5 g(x)\ dx = -6`, then `int_1^5 g(x)\ dx` is equal to
A. −11
B. –1
C. 1
D. 3
E. 11
`B`
`int_1^12 g(x)\ dx` | `= int_1^5 g(x)\ dx + int_5^12 g(x)\ dx` |
`= int_1^5 g(x)\ dx – int_12^5 g(x)\ dx` | |
`5` | `= int_1^5 g(x)\ dx – (-6)` |
`int_1^5 g(x)\ dx` | `= -1` |
`=> B`
Given that `int_0^6 ( x + k ) \ dx = 30`, and `k` is a constant, find the value of `k`. (2 marks)
`k = 2`
`int_0^6 ( x + k ) \ dx` | `= 30` |
`int_0^6 ( x + k ) \ dx` | `= [ 1/2\ x^2 + kx ]_0^6` |
`30` | `= [(1/2xx 6^2 + 6 xx k ) – 0 ]` |
`30` | `= 18 + 6k` |
`6k` | `= 12` |
`:. k` | `= 2` |
Evaluate `int_1^4 8/x^2\ dx`. (3 marks)
`6`
`int_1^4 8/x^2\ dx`
`= 8 int_1^4 x^-2\ dx`
`= 8[-1/x]_1^4`
`= 8[(-1/4) – (-1/1)]`
`= 8(3/4)`
`= 6`
Evaluate `int_1^4 x^2 + sqrtx\ dx`. (3 marks)
`77/3`
`int_1^4 x^2 + sqrtx\ \ dx`
`= int_1^4 (x^2 + x^(1/2))\ dx`
`= [1/3 x^3 + 1/(3/2) x^(3/2)]_1^4`
`= [(x^3)/3 + 2/3x^(3/2)]_1^4`
`= [((4^3)/3 + 2/3 xx 4^(3/2))\ – (1/3 + 2/3)]`
`= [(64/3 + 16/3) – 3/3]`
`= [80/3 – 3/3]`
`= 77/3`
If `int_1^3 f(x)\ dx = 5`, then `int_1^3 (2f(x) - 3)\ dx` is equal to
A. `4`
B. `5`
C. `7`
D. `10`
E. `16`
`A`
`int_1^3 (2 f(x) – 3)\ dx`
`= 2 int_1^3 f(x)\ dx + int_1^3 (– 3)\ dx`
`=2(5) +[-3x]_1^3`
`= 10 + (– 6)`
`= 4`
`=> A`
Let `f` be a differentiable function defined for all real `x`, where `f (x) >= 0` for all `x in [0, a].`
If `int_0^a f(x)\ dx = a`, then `2 int_0^(5a) (f (x/5) + 3)\ dx` is equal to
A. `2a + 6`
B. `10a + 6`
C. `20a`
D. `40a`
E. `50a`
`D`
`2 int_0^(5a) f(x/5) + 3\ dx`
`= 2 int_0^(5a) f(x/5)\ dx + 2 int_0^(5a) (3)\ dx`
`= 2 xx 5 [F(x/5)]_0^(5a) + [3x]_0^(5a)`
`= 10 [F(a) – F (0)] + 30a`
`= 10a + 30a`
`= 40a`
`=> D`
Evaluate `int_1^4 (1/sqrtx)\ dx`. (2 marks)
`2`
`int_1^4 x^(−1/2)\ dx` | `= 2[x^(1/2)]_1^4` |
`= 2[4^(1/2) – 1^(1/2)]` | |
`= 2(2 – 1)` | |
`= 2` |
If `f(x) = int_0^x (sqrt(t^2 + 4))\ dt`, then `f prime (– 2)` is equal to
A. `sqrt 2`
B. `- sqrt 2`
C. `2 sqrt 2`
D. `-2 sqrt 2`
E. `4 sqrt 2`
`C`
`f(x)` | `= int_0^x (sqrt(t^2 + 4))\ dt` |
`f′(x)` | `= sqrt(t^2 + 4)` |
`:. f′(− 2)` | `= sqrt((-2)^2+4)` |
`=sqrt8` | |
`=2 sqrt2` |
`=> C`
If `int_0^5 g(x)\ dx = 20` and `int_0^5 (2g(x) + ax)\ dx = 90`, then the value of `a` is
A. `0`
B. `4`
C. `2`
D. `− 3`
E. `1`
`B`
`int_0^5 (2g(x) + ax)\ dx` | `=90` |
`2int_0^5 g(x)\ dx + int_0^5 ax\ dx` | `= 90` |
`2(20) + a/2[x^2]_0^5` | `=90` |
`25/2a` | `= 50` |
`:. a` | `= 4` |
`=> B`
If `int_1^4 f(x)\ dx = 6`, then `int_1^4 (5 - 2\ f(x))\ dx` is equal to
A. `3`
B. `4`
C. `5`
D. `6`
E. `16`
`A`
`int_1^4 5 – 2\ f(x)\ dx`
`= int_1^4 5\ dx – 2 int_1^4 f(x)\ dx` |
`= 15 – 2(6)` |
`= 3` |
`=> A`