SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, MET2 2007 VCAA 11 MC

The solution set of the equation  `e^(4x) - 5e^(2x) + 4 = 0`  over `R` is

A.   `{1, 4}`

B.   `{– 4, – 1})`

C.   `{– 2, – 1, 1, 2})`

D.   `{– log_e(2), 0, log_e(2)}`

E.   `{0, log_e(2)}`

Show Answers Only

`E`

Show Worked Solution

`text(Solve for)\ \ x\ \ text(on CAS:)`

`x = 0 \ or \ x = log_e(2)`

`=>   E`

Filed Under: Polynomials Tagged With: Band 3, smc-750-40-Solve Quadratic

Algebra, MET2 2009 VCAA 5 MC

Let  `f: R -> R,\ f (x) = x^2`

Which one of the following is not true?

  1. `f(xy) = f (x) f (y)`
  2. `f(x) - f(-x) = 0`
  3. `f (2x) = 4 f (x)`
  4. `f (x - y) = f(x) - f(y)`
  5. `f (x + y) + f (x - y) = 2 (f (x) + f(y))`
Show Answers Only

`D`

Show Worked Solution

`text(Solution 1)`

`text(Consider option)\ D:`

`f(x-y)` `=(x-y)^2`
  `=x^2 -2xy+y^2`
`f(x)-f(y)` `= x^2-y^2`
`:.f(x-y)` `!=f(x)-f(y)`

 
`=>D`

 

`text(Solution 2)`

`text(Define)\ \ f(x) = x^2`

`text(Enter each functional equation on CAS)`

`text(until output does NOT read “true”.)`

`=>   D`

Filed Under: Functional Equations, Polynomials Tagged With: Band 4, smc-642-40-Other functions, smc-750-40-Solve Quadratic

Functions, MET1 2013 VCAA 9

The graph of  `f(x) = (x-1)^2-2, x in [– 2, 2]`, is shown below. The graph intersects the `x`-axis where  `x = a.`

vcaa-2013-meth-9

Find the value of `a.`  (1 mark)

Note: other parts of this question are out of the syllabus and not included.

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`1-sqrt 2`

Show Worked Solution

`text(Find)\ \ x text(-intercept:)`

♦ Mean mark 50%.
`(x-1)^2-2` `= 0`
`(x-1)^2` `= 2`
`x-1` `= +- sqrt 2`
`x` `= 1 +- sqrt 2,\ \ a < 0`
`:. a` `= 1-sqrt 2`

Filed Under: Polynomials Tagged With: Band 5, smc-750-40-Solve Quadratic

Graphs, MET2 2015 VCAA 7 MC

The range of the function  `f:\ text{(−1, 2]} -> R,\ \ f(x) = -x^2 + 2x-3` is

  1. `R`
  2. `text{(−6, −3]}`
  3. `text{(−6, −2]}`
  4. `text{[−6, −3]}`
  5. `text{[−6, −2]}`
Show Answers Only

`C`

Show Worked Solution

`text(A sketch of the equation:)`

`y` `=-x^2 + 2x-3`
 `dy/dx` `=-2x+2`

 

`=>\ text(Concave down with turning point when)\ \ x=1,`
 

vcaa-2015-7mc-answer1
 

`:. text(Range) = (-6,-2]`

`=>   C`

Filed Under: Curve Sketching, Polynomials Tagged With: Band 4, smc-724-45-Other graphs, smc-750-40-Solve Quadratic

Graphs, MET2 2012 VCAA 3 MC

The range of the function  `f: text{[−2, 3)} -> R,\ f(x) = x^2 - 2x - 8`  is

A.   `R`

B.   `text{(−9, −5]}`

C.   `text{(−5, 0)}`

D.   `text{[−9, 0]}`

E.   `text{[−9, −5)}`

Show Answers Only

`D`

Show Worked Solution

`text(Sketching the quadratic:)`

met2-2012-vcaa-3-mc-answer

`:.\ text(Range) = [−9,0]`

`=>   D`

Filed Under: Polynomials Tagged With: Band 4, smc-750-40-Solve Quadratic

Copyright © 2014–2025 SmarterEd.com.au · Log in