SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET2 2024 VCAA 1

Consider the function  \( f: R \rightarrow R, f(x)=(x+1)(x+a)(x-2)(x-2 a) \text { where } a \in R \text {. } \)

  1. State, in terms of \(a\) where required, the values of \(x\) for which \(f(x)=0\).  (1 mark

    --- 2 WORK AREA LINES (style=lined) ---

  1. Find the values of \(a\) for which the graph of \(y=f(x)\) has
      
     i. exactly three \(x\)-intercepts.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. exactly four \(x\)-intercepts.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  1. Let \(g\) be the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).
      
      i. Find \(g^{\prime}(x)\)   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     ii. Find the coordinates of the local maximum of \(g\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

    iii. Find the values of \(x\) for which \(g^{\prime}(x)>0\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     iv. Consider the two tangent lines to the graph of \(y=g(x)\) at the points where
    \(x=\dfrac{-\sqrt{3}+1}{2}\) and \(x=\dfrac{\sqrt{3}+1}{2}\). Determine the coordinates of the point of intersection of these two tangent lines.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  1. Let \(g\) remain as the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).

    Let \(h\) be the function \(h: R \rightarrow R, h(x)=(x+1)(x-1)(x+2)(x-2)\), which is the function \(f\) where \(a=-1\).
      
     i. Using translations only, describe a sequence of transformations of \(h\), for which its image would have a local maximum at the same coordinates as that of \(g\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. Using a dilation and translations, describe a different sequence of transformations of \(h\), for which its image would have both local minimums at the same coordinates as that of \(g\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.  \(g^{\prime}(x)=2(x-2)(x+1)(2x-1)\)

cii. \(\left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ. \(\left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.   \(\text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii.  \(\text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units}\)

Show Worked Solution

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(\text{The solution must be all }R\ \text{except those that give 3 or less solutions.}\)

\(\therefore\ R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.    \(g^{\prime}(x)\) \(=2(2-x)(x+1)^2+(x-2)^22(x+1)\)
    \(=2(x-2)(x+1)(x+1+x+2)\)
    \(=2(x-2)(x+1)(2x-1)\)

  
cii.  \(\text{When  }g^{\prime}(x)=0, x=2, -1, \dfrac{1}{2}\)

\(\text{From graph local maximum occurs when }x=\dfrac{1}{2}\)

\(g\left(\dfrac{1}{2}\right)\) \(=\left(\dfrac{1}{2}+1\right)^2\left(\dfrac{1}{2}-2\right)^2\)
  \(=\dfrac{9}{4}\times \dfrac{9}{4}=\dfrac{81}{16}\)

  
\(\therefore\ \text{Local maximum at}\ \left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(\text{From graph}\ g^{\prime}(x)>0\ \text{when }x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ.  \(\text{Use CAS to find tangent lines and solve to find intersection.}\)

\(\text{Point of intersection of tangent lines}\ \left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.  \(\text{Local maximum of }g(x)\ \rightarrow\left(\dfrac{1}{2}, \dfrac{81}{16}\right)\)

\(\text{From CAS local maximum of }h(x)\ \rightarrow \left(0, 4\right)\)

\(\therefore\ \text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii. \(\text{Using CAS to solve }g^{\prime}(x)=0\ \text{and }h^{\prime}(x)=0\)

\(\text{Local Minimums for }g(x)\ \text{at }(-1, 0)\ \text{and }(2, 0)\ \text{which are 3 apart.}\)

\(\text{Local minimums for at }h(x)\ \text{at }\left(-\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\ \text{and }\left(\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\)

\(\therefore\ \text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units.}\)

 

Filed Under: Polynomials, Tangents and Normals, Transformations Tagged With: Band 3, Band 4, Band 5, smc-634-10-Polynomial, smc-750-10-Factor Theorem, smc-750-60-Other, smc-753-40-Combinations

Functions, MET2 2022 VCAA 5 MC

The largest value of `a` such that the function `f:(-\infty, a] \rightarrow R, f(x)=x^2+3 x-10`, where `f` is one-to-one, is

  1. `-12.25`
  2. `-5`
  3. `-1.5`
  4. `0`
  5. `2`
Show Answers Only

`C`

Show Worked Solution
`f(x)` `= x^2+3 x-10`  
`f^{\prime}(x)` `= 2x + 3`  

  
Turning point when `f^{\prime}(x) = 0`

`\ 2x+3 = 0  \rightarrow  x = -3/2`

`:.\ a = – 1.5`

`=>C`

Filed Under: Polynomials Tagged With: Band 4, smc-750-60-Other

Calculus, MET2 2023 VCAA 14 MC

A polynomial has the equation  \(y=x(3x-1)(x+3)(x+1)\).

The number of tangents to this curve that pass through the positive \(x\)-intercept is

  1. 0
  2. 1
  3. 2
  4. 3
  5. 4
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Positive}\ x\text{-intercept occurs at}\ \Big(\dfrac{1}{3}, 0\Big) \)

\(\text{Find tangent line at}\ \ x=a\ \text{(by CAS):}\)

\(y_{\text{tang}}=\Big(12a^3+33a^2+10a-3\Big)x-a^2\Big(9a^2+22a+5\Big)\)

\(\text{Solve}\ \ \ y_{\text{tang}}\Bigg(\dfrac{1}{3}\Bigg)=0\ \text{for }a:\)

\(a=\dfrac{-\sqrt{7}-4}{3},\ a=\dfrac{\sqrt{7}-4}{3}\text{ or}\ a=\dfrac{1}{3}\)

\(\therefore\ \text{3 solutions exist.}\)

\(\Rightarrow D\)

\(\text{NOTE: Graphical methods could also be used}\)


♦♦♦ Mean mark 29%.

Filed Under: Tangents and Normals Tagged With: Band 5, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-750-60-Other

Algebra, MET2 2023 VCAA 2 MC

For the parabola with equation  \(y=ax^2+2bx+c\), where \(a, b, c \in R\), the equation of the axis of symmetry is

  1. \(x=-\dfrac{b}{a}\)
  2. \(x=-\dfrac{b}{2a}\)
  3. \(y=c\)
  4. \(x=\dfrac{b}{a}\)
  5. \(x=\dfrac{b}{2a}\)
Show Answers Only

\(A\)

Show Worked Solution
\(\text{Axis of symmetry}\) \(=-\dfrac{b}{2a}\)      \((b = 2b)\)
  \(=-\dfrac{2b}{2a}\)  
  \(=-\dfrac{b}{a}\)  

 
\(\Rightarrow A\)

♦ Mean mark 53%.

Filed Under: Polynomials Tagged With: Band 5, smc-750-60-Other

Graphs, MET2-NHT 2019 VCAA 1

Parts of the graphs of  `f(x) = (x-1)^3(x + 2)^3`  and  `g(x) = (x-1)^2(x + 2)^3`  are shown on the axes below.
 


 

The two graphs intersect at three points,  (–2, 0),  (1, 0)  and  (`c`, `d`). The point  (`c`, `d`)  is not shown in the diagram above.

  1. Find the values of `c` and `d`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the values of `x` such that  `f(x) > g(x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. State the values of `x` for which
    1. `f^{'}(x) > 0`   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    2. `g^{'}(x) > 0`   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  4. Show that  `f(1 + m) = f(–2-m)`  for all  `m`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. Find the values of `h` such that  `g(x + h) = 0`  has exactly one negative solution.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  6. Find the values of `k` such that  `f(x) + k = 0`  has no solutions.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `c = 2 \ , \ d = 64`
  2. `(–∞, –2) \ ∪ \ (2, ∞)`
  3. i.  `(–(1)/(2), 1) \ ∪ \ (1, ∞)`
    ii. `(–∞, –2) \ ∪ \ (–2, –(1)/(5)) \ ∪ \ (1, ∞)`
  4. `text{Proof (Show Worked Solution)}`
  5.  `-2< h <=1`
  6. `(729)/(64)`
Show Worked Solution

a.    `text(Solve:) \ \ f(x) = g(x)`

`x = 1 , \ –2 \ text(and) \ 2`
 
`f(2) = 1^3 xx 4^3 = 64`
 
`text(Intersection at) \ (2, 64)`

`:. \ c = 2 \ , \ d = 64`

 

b.    `text(Using the graph and intersection at) \ (2, 64):`

`f(x) > g(x) \ \ text(for) \ \ (–∞, –2) \ ∪ \ (2, ∞)`

 

c.i.  `f'(x) > 0 \ \ text(for) \ \ (–(1)/(2), 1) \ ∪ \ (1, ∞)`

c.ii.  `g'(x) > 0 \ \ text(for) \ \ (–∞, –2) \ ∪ \ (–2, –(1)/(5)) \ ∪ \ (1, ∞)`

 

d.     `f(1 + m)` `= (1 + m-1)^3 (1 + m + 2)^3`
  `= m^3 (m + 3)^3`

 

`f(–2-m)` `= (–2-m -1)^3 (-2-m + 2)^3`
  `= (-m-3)^3 (-m)^3`
  `= (–1)^3 (m + 3)^3 (–1)^3 m^3`
  `= m^3 (m + 3)^3`

 

e.     `g(x + h)` `= (x + h-1)^2(x + h + 2)^3`
  `= underbrace{(x-(1 -h))^2}_{text(+ve solution)} * underbrace{(x-(h-2))^3}_{text(–ve solution)}`

 
`1-h ≥ 0 \ \ => \ \ h ≤ 1`

`-h-2 < 0 \ \ =>\ \ h > -2`

`:. -2< h <=1`

 

f.    `f(x) \ \ text(minimum S.P. when) \ \ f ′(x) = 0 \ =>  \ x =-(1)/(2)`

`text(S.P. at) \ \ (-(1)/(2) \ , \ -(729)/(64))`

`:. \ text(No solution if) \ \ k > (729)/(64)`

Filed Under: Polynomials Tagged With: Band 3, Band 4, Band 5, smc-750-60-Other

Graphs, MET2 2017 VCAA 2 MC

Part of the graph of a cubic polynomial function  `f` and the coordinates of its stationary points are shown below.
 


 

`f′(x) < 0`  for the interval

  1. `(0,3)`
  2. `(−oo,−5) ∪ (0,3)`
  3. `(−oo,−3) ∪ (5/3,oo)`
  4. `(−3,5/3)`
  5. `((−400)/27,36)`
Show Answers Only

`D`

Show Worked Solution

`f′(x) < 0\ \ text(when the gradient of the curve is negative.)`

`=> D`

Filed Under: Polynomials Tagged With: Band 3, smc-750-60-Other

Calculus, MET2 2014 VCAA 5

Let  `f: R -> R, \ \ f (x) = (x-3)(x-1)(x^2 + 3)  and  g: R-> R, \ \ g (x) = x^4-8x.`

  1. Express  `x^4-8x`  in the form  `x(x-a) ((x + b)^2 + c)`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Describe the translation that maps the graph of  `y = f (x)`  onto the graph of  `y = g (x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the values of `d` such that the graph of  `y = f (x + d)` has
    1. one positive `x`-axis intercept.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    2. two positive `x`-axis intercepts.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  4. Find the value of `n` for which the equation  `g (x) = n`  has one solution.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. At the point  `(u, g(u))`, the gradient of  `y = g(x)`  is `m` and at the point `(v, g(v))`, the gradient is  `-m`, where `m` is a positive real number.
    1. Find the value of  `u^3 + v^3`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

    2. Find `u` and `v` if  `u + v = 1`.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Find the equation of the tangent to the graph of  `y = g(x)`  at the point  `(p, g(p))`.   (1 mark)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Find the equations of the tangents to the graph of  `y = g(x)`  that pass through the point with coordinates  `(3/2, -12)`.   (3 marks)

      --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x(x-2)((x + 1)^2 + 3)`
  2. `text(See Worked Solutions)`
  3.  i. `[1,3)`
  4. ii. `d < 1`
  5. `-6 xx 2^(1/3)`
  6.  i. `4`
  7. ii. `u = (sqrt5 + 1)/2,quad v = (-sqrt5 + 1)/2`
  8. i. `y = 4(p^3-2)x-3p^4`
  9. ii. `y = -8x;quady = 24x-48`
Show Worked Solution

a.  `text(Solution 1)`

`g(x) = x^4-8x`

`= x(x-2)(x^2 + 2x + 4)\ \ \ text([by CAS])`

`= x(x-2)((x + 1)^2 + 3)`
 

`text(Solution 2)`

`x^4-8x` `=x(x^3-2^3)`
  `=x(x-2)(x^2 +2x+4)`
  `=x(x-2)(x^2 +2x+1+3)`
  `=x(x-2)((x+1)^2+3)`

 

b.    `f(x + 1)` `= ((x + 1)-3)((x + 1)-1)((x + 1)^2 + 3)`
    `= x(x-2)((x + 1)^2 + 3)`
    `= g(x)`

 

♦ Mean mark (b) 37%.

`:.\ text(Horizontal translation of 1 unit to the left.)`
 

c.i.  `text(Consider part of the)\ \ f(x)\ text(graph below:)`

♦♦♦ Mean mark 7%.

 
met2-2014-vcaa-sec5-answer
 

`text(For one positive)\ xtext(-axis intercept, translate at least)`

`text(1 unit left, but not more than 3 units left.)`

`:. d ∈ [1,3)`
 

c.ii.   `text(Translate less than 1 unit left, or translate)`

♦♦♦ Mean mark part (c)(ii) 19%.

`text(right.)`

`:. d < 1`
 

d.   `text(If)\ \ g(x)=n\ \ text(has one solution, then it)`

`text(will occur when)\ \ g^{′}(x)=0  and  x>0.`

♦♦♦ Mean mark 17%.
`g^{′}(x)` `=4x^3-8`
`4x^3` `=8`
`x` `=2^(1/3)`

 

met2-2014-vcaa-sec5-answer1
 

`n` `=g(2^(1/3))`
  `=2^(4/3)-8xx2^(1/3)`
  `=-6 xx 2^(1/3)`

 

e.i.   `gprime(u) = mqquadgprime(v) = −m`

♦♦ Mean mark (e.i.) 28%.
`g^{prime}(u)` `= -g^{prime}(v)`
`4u^3-8` `= -(4v^3-8)`
`4u^3 + 4v^3` `= 16`
`:. u^3 + v^3` `= 4`

 

e.ii.   `u^3 + v^3 = 4\ …\ (1)`

♦♦♦ Mean mark (e.ii.) 10%.

`u + v = 1\ …\ (2)`

`text(Solve simultaneous equation for)\ \ u > 0:`

`:. u = (sqrt5 + 1)/2,quad v = (-sqrt5 + 1)/2`
 

f.i.   `text(Solution 1)`

`text(Using the point-gradient formula,)`

`y-g(p)` `=g^{prime}(p)(x-p)`
`y-(p^4-8p)` `=(4p^3-8)(x-p)`
`y` `=(4p^3-8)x -3p^4`

 
`text(Solution 2)`

♦♦ Mean mark (f.i.) 22%.

`y = 4(p^3-2)x-3p^4`

`text([CAS: tangentLine)\ (g(u),x,p)]`

 

f.ii.   `text(Sub)\ (3/2,-12)\ text(into tangent equation,)`

`text(Solve:)\ \ -12 = 4(p^3-2)(3/2)-3p^4\ \ text(for)\ p,`

♦♦♦ Mean mark (f.ii.) 14%.

`p = 0\ \ text(or)\ \ p = 2`

`text(When)\ \ p = 0:`    `y` `= 4(-2)x`
    `= -8x`
`text(When)\ \ p = 2:`    `y` `= 4(2^3-2)x-3(2)^4`
    `= 24x-48`

 
`:. text(Equations are:)\ \ y =-8x, \ y = 24x-48`

Filed Under: Curve Sketching, Polynomials, Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-50-Find tangent given curve, smc-724-20-Degree 4, smc-750-60-Other

Calculus, MET2 2015 VCAA 2

A city is located on a river that runs through a gorge.

The gorge is 80 m across, 40 m high on one side and 30 m high on the other side.

A bridge is to be built that crosses the river and the gorge.

A diagram for the design of the bridge is shown below.
 

 VCAA 2015 2a

The main frame of the bridge has the shape of a parabola. The parabolic frame is modelled by  `y = 60-3/80x^2`  and is connected to concrete pads at  `B (40, 0)`  and  `A (– 40, 0).`

The road across the gorge is modelled by a cubic polynomial function.

  1. Find the angle, `theta`, between the tangent to the parabolic frame and the horizontal at the point  `(– 40, 0)` to the nearest degree.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

The road from `X` to `Y` across the gorge has gradient zero at  `X (– 40, 0)`  and at  `Y (40, 30)`, and has equation  `y = x^3/(25\ 600)-(3x)/16 + 35`.

  1. Find the maximum downwards slope of the road. Give your answer in the form  `-m/n`  where `m` and `n` are positive integers.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Two vertical supporting columns, `MN` and `PQ`, connect the road with the parabolic frame.

The supporting column, `MN`, is at the point where the vertical distance between the road and the parabolic frame is a maximum.

  1. Find the coordinates `(u, v)` of the point `M`, stating your answers correct to two decimal places.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

The second supporting column, `PQ`, has its lowest point at  `P (– u, w)`.

  1. Find, correct to two decimal places, the value of `w` and the lengths of the supporting columns `MN` and `PQ`.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

For the opening of the bridge, a banner is erected on the bridge, as shown by the shaded region in the diagram below.

VCAA 2015 2ai

  1. Find the `x`-coordinates, correct to two decimal places, of `E` and `F`, the points at which the road meets the parabolic frame of the bridge.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the area of the banner (shaded region), giving your answer to the nearest square metre.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `72^@`
  2. `−3/16`
  3. `M (2.49,34.53)`
  4. `w = 35.47\ text(m);quadMN = 25.23\ text(m);quadPQ = 24.30\ text(m)`
  5. `x_E = -23.71;quadx_F = 28.00`
  6. `870\ text(m²)`
Show Worked Solution
a.    `f(x)` `=60-3/80x^2`
  `f′(x)` `=- 3/40 x`

 

`text(At)\ \ x=-40,\ \ f′(x)=3`

♦ Mean mark part (a) 40%.
`tan theta` `= 3`
`:. theta` `= tan^(−1)(3)`
  `=71.56…`
  `= 72^@`

 

b.    `g(x)` `= (x^3)/(25\ 600)-3/16 x + 35`
  `g′(x)` `=(3x^2)/(25\ 600)-3/16`
     

`text(S)text(ince)\ \ 3x^2>=0\ \ text(for all)\ \ x,`

`text(Max downwards slope occurs at)\ \ x= 0.`

`gprime(0) = −3/16` 

 

c.   `text(Let)\ \ V=\ text(distance)\ MN`

`V` `= (60-3/80x^2)-((x^3)/(25\ 600)-3/16x + 35)`
`(dV)/(dx)` `=-3/40 x-(3x^2)/(25\ 600) + 3/16`
♦ Mean mark part (c) 39%.
`(dV)/(dx)` `= 0quadtext(for)\ x ∈ [−40,40]`
 `x` `= 2.490…`

 
`text(When)\ \ x=2.490…,\ \ g(2.490…) = 34.533…`

`:. M (2.49,34.53)`

♦♦ Mean mark part (d) 29%.
MARKER’S COMMENT: Many students didn’t work to a sufficient number of decimal places.

 
d.
   `P(-2.49, w)`

`text(When)\ \ x=-2.490…,\ \ g(-2.490…) = 35.47…`

`:. w = 35.47\ \ text{(2 d.p.)}`

`V_(MN)` `=(60-3/80(2.49…)^2)-(((2.49…)^3)/(25\ 600)-3/16(2.49…) + 35)`
  `=25.23\ text{m  (2 d.p.)}`
`V_(PQ)` `=(60-3/80(-2.49…)^2)-(((-2.49…)^3)/(25\ 600)-3/16(-2.49…) + 35)`
  `=24.30\ text{m  (2 d.p.)}`

 

e.   `text(Intersection occurs when:)`

`f(x) = g(x)quadtext(for)\ x ∈ (−40,40)`

`60-3/80x^2=(x^3)/(25\ 600)-3/16x + 35\ \ text([by CAS])`
 

`x_E = -23.7068… = -23.71\ text{(2 d.p.)}`

`x_F = 27.9963… = 28.00\ text{(2 d.p.)}`
 

f.     `text(Area)` `= int_-23.71^28.00 (f(x)-g(x))dx`
    `=int_-23.71^28.00 (60-3/80x^2-((x^3)/(25\ 600)-3/16x + 35))\ dx`
    `=869.619…\ \ text([by CAS])`
    `= 870\ text(m²)`

Filed Under: Maxima and Minima, Polynomials Tagged With: Band 4, Band 5, smc-641-60-Other themes, smc-750-60-Other

Graphs, MET2 2015 VCAA 3 MC

VCAA 2015 3mc
 

The rule for a function with the graph above could be

  1. `y = -2(x + b)(x - c)^2(x - d)`
  2. `y = 2(x + b)(x - c)^2(x - d)`
  3. `y = -2(x - b)(x - c)^2(x - d)`
  4. `y = 2(x - b)(x - c)(x - d)`
  5. `y = -2(x - b)(x + c)^2(x + d)`
Show Answers Only

`C`

Show Worked Solution

`text(Polynomial Equation:)`

♦♦♦ Mean mark 20% (lowest in 2015 exam).
MARKER’S COMMENT: `b` is negative. If `b= – 2` for example, the factor is `(x-(– 2))“=(x+2)`.

`y = a(x – b)(x – c)^n(x – d),`

`text(where)\ a < 0`

`n = text(even integer)` 

`=>   C`

 

Filed Under: Curve Sketching, Polynomials Tagged With: Band 6, smc-724-20-Degree 4, smc-750-60-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in