SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Measurement, STD2 M6 2019 HSC 17

The diagram shows a triangle with sides of length `x` cm, 11 cm and 13 cm and an angle of 80°.
 


 

Use the cosine rule to calculate the value of `x`, correct to two significant figures.  (3 marks)

Show Answers Only

`16\ text(cm  (2 sig. fig.))`

Show Worked Solution
`x^2` `= 11^2 + 13^2 – 2 xx 11 xx 13 xx cos80°`
  `= 240.336…`

 

`:.x` `= 15.502…`
  `= 16\ text(cm  (2 sig. fig.))`

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 4, smc-804-10-Cosine Rule

Measurement, STD2 M6 2018 HSC 12 MC

The diagram shows a triangle with side lengths 8 m, 9 m and 10m.
 


 

What is the value of `theta`, marked on the diagram, to the nearest degree?

  1. 49°
  2. 51°
  3. 59°
  4. 72°
Show Answers Only

`text(D)`

Show Worked Solution

`text(Using the cosine rule:)`

`costheta` `= (8^2 + 9^2 – 10^2)/(2 xx 8 xx 9)`
  `= 0.3125`
`:.theta` `= cos^(−1)(0.3125)`
  `= 71.790…^@`

 
`=>D`

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule

Measurement, STD2 M6 2015 HSC 30e

From point `S`, which is 1.8 m above the ground, a pulley at `P` is used to lift a flat object `F`. The lengths `SP` and `PF` are 5.4 m and 2.1 m respectively. The angle `PSC` is 108°.
 

 

  1. Show that the length  `PC`  is 6.197 m, correct to 3 decimal places.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Calculate `h`, the height of the object above the ground.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `6.197\ text{m  (to 3 d.p.)  … as required}`
  2. `1.37\ text{m  (to 2 d.p.)}`
Show Worked Solution
i.   

2UG 2015 30e Answer

`text(Show)\ PC = 6.197\ text(m)`

♦ Mean mark 41%.

`text(Using the cosine rule in)\ Delta PSC` 

`PC^2` `= PS^2 + SC^2-2 xx PS xx SC xx cos\ 108^@`
  `= 5.4^2 + 1.8^2-2 xx 5.4 xx 1.8 xx cos\ 108^@`
  `= 38.4072…`
`:.PC` `= 6.19736…`
  `= 6.197\ text{m  (to 3 d.p.)  …as required}`

 

ii.   `text(Let)\ \ SD⊥PE`

♦♦ Mean mark below 19%.
STRATEGY: Finding `PC` in part (i) and needing `PE` to find `h` should flag the strategy of finding `EC` and using Pythagoras.

`∠DSC\ text(is a right angle)`

`:.∠DSP = 108^@-90^@ = 18^@`

 

`text(In)\ ΔPDS`

`cos\ 18^@` `= (DS)/5.4`
 `DS` `= 5.4 xx cos\ 18^@`
  `= 5.1357…\ text(m)`

 
`EC = DS = 5.1357…\ text{m  (opposite sides of rectangle}\ DECS text{)}`
 

`text(Using Pythagoras in)\ Delta PEC:`

`PE^2 + EC^2 = PC^2`

`PE^2 + 5.1357^2` `= 6.197^2`
`PE^2` `= 12.027…`
`PE` `= 3.468…\ text(m)`

 
`text(From the diagram,)`

`h` `= PE-PF`
  `= 3.468…-2.1`
  `= 1.368…`
  `= 1.37\ text{m  (to 2 d.p.)}`

Filed Under: 2-Triangle and Harder Examples, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 5, Band 6, smc-804-10-Cosine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2006 HSC 24b

A 130 cm long garden rake leans against a fence. The end of the rake is 44 cm from the base of the fence.

  1. If the fence is vertical, find the value of `theta` to the nearest degree.  (2 marks)
      
          2UG-2006-24b-i

    --- 4 WORK AREA LINES (style=lined) ---

     

  2. The fence develops a lean and the rake is now at an angle of 53° to the ground. Calculate the new distance (`x` cm) from the base of the fence to the head of the rake. Give your answer to the nearest centimetre.  (2 marks)
     
          2UG-2006-24b-ii

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{70°  (nearest degree)}`
  2. `text{109 cm  (nearest cm)}`
Show Worked Solution
i.   

2UG-2006-24b1 Answer

`cos theta` `= 44/130`
  `= 70.216… ^@`
  `= 70^@\ \ \ text{(nearest degree)}`

 

ii.   

2UG-2006-24b2 Answer

`text(Using cosine rule)`

`x^2` `= 130^2 + 44^2-2 xx 130 xx 44 xx cos 53^@`
  `= 11\ 951.23…`
`x` `= 109.32…`
  `= 109\ text{cm  (nearest cm)}`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2), Pythagoras and basic trigonometry Tagged With: Band 4, Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2005 HSC 5 MC

Which formula should be used to calculate the distance between Toby and Frankie?

  1. `a/(sin A) = b/(sin B)`
  2. `c^2 = a^2 + b^2`
  3. `A = 1/2 ab\ sinC`
  4. `c^2 = a^2 + b^2 − 2ab\ cosC`
Show Answers Only

`A`

Show Worked Solution

`text(The triangle is not a right-angled triangle,)`

`:.\ text(Not)\ B`

`text(Given the information on the diagram provides)`

`text(2 angles and 1 side, the sine rule will work best.)`

`a/sinA = b/sinB`

`=> A`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-20-Sine Rule, smc-804-10-Cosine Rule, smc-804-20-Sine Rule

Measurement, STD2 M6 2008 HSC 25c

Pieces of cheese are cut from cylindrical blocks with dimensions as shown.

 

Twelve pieces are packed in a rectangular box. There are three rows with four pieces of cheese in each row. The curved surface is face down with the pieces touching as shown.
  

  1. What are the dimensions of the rectangular box?  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

     

    To save packing space, the curved section is removed.
     
             
     

  2. What is the volume of the remaining triangular prism of cheese? Answer to the nearest cubic centimetre.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `41\ text(cm) xx 21\ text(cm) xx 15\ text(cm)`
  2. `506\ text(cm)³\ text{(nearest whole)}`
Show Worked Solution

i.  `text(Box height) = 15\ text(cm)`

♦ Mean mark 45%.

`text{(radius of the arc)}`

`text(Box width)` `= 3 xx 7`
  `= 21\ text(cm)`
`text(Box length)` `= 4x`

`text(Using cosine rule)`

`c^2` `= a^2 + b^2 – 2ab cos C`
`x^2` `= 15^2 + 15^2 – 2 xx 15 xx 15 xx cos 40^@`
  `= 450 – 344.7199…`
  `= 105.2800…`
`x` `= 10.2606…`

 

`text(Box length)` `= 4 xx 10.2606…`
  `= 41.04…`

 
`:.\ text(Dimensions are)\ \ 41\ text(cm) xx 21\ text(cm) xx 15\ text(cm)`

 

ii.  `text(Volume) = Ah`

♦♦♦ Mean mark 22%.

`h = 7\ text(cm)`

`text(Find)\ A:`

`A` `= 1/2 ab sin C`
  `= 1/2 xx 15 xx 15 xx sin 40^@`
  `= 72.3136…`

 

`:. V` `= 72.3136… xx 7`
  `= 506.195…`
  `= 506\ text(cm³)\ \ text{(nearest whole)}`

Filed Under: Areas and Volumes (Harder), Non-Right Angled Trig, Non-Right Angled Trig (Std2), Perimeter, Area and Volume (Std 2), Perimeter, Area and Volume (Std2-2027) Tagged With: Band 5, Band 6, smc-6304-50-Volume (Circular Measure), smc-798-50-Volume (Circular Measure), smc-804-10-Cosine Rule, smc-804-30-Sine Rule (Area), smc-804-60-X-topic with PAV

Measurement, STD2 M6 2008 HSC 5 MC

What is the size of the smallest angle in this triangle?
 

  1. `29^@` 
  2. `47^@`
  3. `58^@`
  4. `76^@`
Show Answers Only

`B`

Show Worked Solution

`text(Smallest angle is opposite smallest side.)`

` cos A` `= (b^2 + c^2-a^2)/(2bc)`
  `= (7^2 + 8^2-6^2)/(2 xx 7 xx 8)`
  `= 0.6875`
`A` `=cos ^(-1)(0.6875)`
`:.\ A` `= 46.567…^@`

 
`=>  B`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule

Measurement, STD2 M6 2010 HSC 26d

Find the area of triangle `ABC`, correct to the nearest square metre.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`717\ text(m²)`    `text{(nearest m²)}`

Show Worked Solution
♦♦ Mean mark 32%.
TIP: The allocation of 3 marks to this question should flag the need for more than 1 step.
`cos/_C` `=(AC^2 + CB^2-AB^2)/(2 xx AC xx CB)`
  `=(50^2 + 40^2-83^2)/(2 xx 50 xx 40)`
  `= -0.69725…`
`/_C` `=134.2067…^@`

 

`text(Using Area) = 1/2 ab\ sinC :`
`text(Area)\ Delta ABC` `=1/2 xx 50 xx 40 xx sin134.2067…^@`
  `=716.828…`
  `=717\ text(m²)\ \ \ \ text{(nearest m²)}`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 5, num-title-ct-extension, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-4553-30-Sine Rule (Area), smc-804-10-Cosine Rule, smc-804-20-Sine Rule

Measurement, STD2 M6 2013 HSC 26a

Triangle `PQR` is shown. 

2013 26a

Find the size of angle `Q`, to the nearest degree.    (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`110^@\ \ \ text{(nearest degree)}`

Show Worked Solution
♦ Mean mark 47%

`text(Using Cosine rule)`

`cos /_Q` `= (a^2 + b^2-c^2)/(2ab)`
  `= (53^2 + 66^2-98^2)/(2xx53xx66)`
  `=-0.3486…`

 

`:. /_Q` `= 110.4034…`
  `= 110^@\ \ \ text{(nearest degree)}`

Filed Under: Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in