SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C2 EQ-Bank 4 MC

If  `f(x)=log_2(x^(2x))`, which expression is equal to  `f^(′)(x)`?

  1. `2/(x^(2x)ln2`
  2. `2/ln2 + 2log_2x`
  3. `log_2x+2/ln2`
  4. `2/ln2 xx log_2(x^(2x-1))`
Show Answers Only

`B`

Show Worked Solution
`f(x)` `=log_2(x^(2x))`  
  `=2x log_2x`  
  `=(2x lnx)/ln2`  

 

`f^(′)(x)` `=1/ln2 (2x*1/x + 2lnx)`  
  `=2/ln2 + (2lnx)/ln2`  
  `=2/ln2 + 2log_2x`  

 
`=>  B`

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 4, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule, smc-967-60-New Reference Sheet, smc-967-70-Log Laws required

Calculus, 2ADV C2 SM-Bank 8

Let  `y= (x + 5) log_e (x)`.

Find  `(dy)/(dx)`  when  `x = 5`.  (2 marks)

Show Answers Only

`log_e 5 +2`

Show Worked Solution
`(dy)/(dx)` `= 1 xx log_e x + (x + 5) * (1)/(x)`
  `= log_e x + (x + 5)/(x)`

 
`:. dy/dx|_(x=5)=log_e 5 +2`

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule

Calculus, 2ADV C2 SM-Bank 6

Differentiate with respect to `x`:

`log_e x^x`.  (2 marks)

Show Answers Only

`1 + log_ex`

Show Worked Solution
`y` `=log_e x^x`  
  `=xlog_ex`  
`dy/dx` `=x*1/x + log_ex`  
  `=1 + log_ex`  

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 4, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-70-Log Laws required

Calculus, 2ADV C2 EQ-Bank 1

Differentiate  `log_2 x^2`  with respect to `x`.  (2 marks)

Show Answers Only

`2/(xln2)`

Show Worked Solution
TIP: The new Advanced reference sheet can be used here!

`y` `= log_2 x^2`
`(dy)/(dx)` `= {:d/(dx):} ((lnx^2)/(ln2))`
  `= 1/(ln2) · d/(dx)(ln x^2)`
  `= 1/(ln2) · (2x)/(x^2)`
  `= 2/(xln2)`

Filed Under: L&E Differentiation (Y12), Log Calculus (Y12) Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-60-New Reference Sheet

Calculus, 2ADV C4 2019 HSC 13c

  1.  Differentiate  `(ln x)^2`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Hence, or otherwise, find  `int(ln x)/x\ dx`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(2 ln x)/x`
  2. `1/2 (ln x)^2 + C`
Show Worked Solution
i.    `y` `= (ln x)^2`
  `(dy)/(dx)` `= 2 ⋅ 1/x ⋅ ln x`
    `= (2 ln x)/x`

♦ Mean mark part (ii) 49%.

ii.    `int (ln x)/x\ dx` `=1/2 int (2 ln x)/x dx`
    `= 1/2 (ln x)^2 +C`

Filed Under: L&E Integration, Log Calculus (Y12) Tagged With: Band 3, Band 5, smc-1203-30-Log (Indefinite), smc-1203-50-Diff then Integrate, smc-964-10-Differentiation, smc-964-50-Diff then integrate

Calculus, 2ADV C2 2018 HSC 5 MC

What is the derivative of  `sin(ln x),` where  `x > 0`?

  1. `cos (1/x)`
  2. `cos (ln x)`
  3. `cos ((ln x)/x)`
  4. `(cos (ln x))/x`
Show Answers Only

`D`

Show Worked Solution
`y` `= sin (ln x)`
`(dy)/(dx)` `= cos (ln x) xx d/(dx) (ln x)`
  `= cos (ln x) xx 1/x`
  `= (cos (ln x))/x`

 `=>  D`

Filed Under: Differentiation and Integration, L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Trig Differentiation (Y12) Tagged With: Band 3, smc-964-10-Differentiation, smc-964-40-Trig overlap, smc-967-20-Logs, smc-967-50-Chain Rule, smc-968-10-Sin, smc-968-60-Chain Rule

Calculus, 2ADV C2 2017 HSC 11d

Differentiate  `x^3 ln x`.  (2 marks)

Show Answers Only

`x^2 (3 ln\ x + 1)`

Show Worked Solution

`y = x^3 ln\ x`

`text(Using the product rule:)`

`(dy)/(dx)` `= 3x^2 * ln\ x + x^3 * 1/x`
  `= x^2 (3 ln\ x + 1)`

Filed Under: L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Logs and Exponentials - Differentiation Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule

Calculus, 2ADV C2 2015 HSC 11f

Differentiate  `y = (x + 4) ln\ x`.  (2 marks)

Show Answers Only

`ln\x + 4/x +1`

Show Worked Solution

`y = (x + 4) ln\ x`

`text(Using the product rule)`

`(dy)/(dx)` `= d/(dx) (x + 4) * ln x + (x + 4) d/(dx) ln\ x`
  `= ln x + (x + 4) 1/x`
  `= ln x + 4/x + 1`

Filed Under: L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Logs and Exponentials - Differentiation Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule

Calculus, 2ADV C2 2008 HSC 2aii

Differentiate with respect to  `x`:

`x^2 log_e x`   (2 marks)

Show Answers Only

`x + 2x log_e x`

Show Worked Solution
`y` `= x^2 log_e x`
`dy/dx` `= x^2 * 1/x + 2x * log_e x`
  `= x + 2x log_e x`

Filed Under: L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Logs and Exponentials - Differentiation Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule

Calculus, 2ADV C4 2008 HSC 3b

  1. Differentiate  `log_e (cos x)`  with respect to  `x`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, evaluate  `int_0^(pi/4) tan x\ dx`.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `- tan x`
  2. `- log_e (1/sqrt2)\ \ text(or)\ \ 0.35\ \ text{(2 d.p.)}`
Show Worked Solution
i.    `y` `= log_e (cos x)`
  `dy/dx` `= (- sin x)/(cos x)`
    `= – tan x`

 

ii.    `int_0^(pi/4) tan x\ dx`
  `= – [log_e (cos x)]_0^(pi/4)`
  `= – [log_e(cos (pi/4)) – log_e (cos 0)]`
  `= – [log_e (1/sqrt2) – log_e 1]`
  `= – [log_e (1/sqrt2) – 0]`
  `= – log_e (1/sqrt2)`
  `= 0.346…`
  `= 0.35\ \ text{(2 d.p.)}`

Filed Under: Differentiation and Integration, Log Calculus, Log Calculus (Y12), Trig Integration Tagged With: Band 3, Band 4, smc-1204-50-Diff then Integrate, smc-964-10-Differentiation, smc-964-40-Trig overlap, smc-964-50-Diff then integrate

Calculus, 2ADV C2 2011 HSC 1d

Differentiate  `ln(5x+2)` with respect to `x`.    (2 marks) 

Show Answer Only

`5/(5x+2)`

Show Worked Solutions
`y` `=ln(5x+2)`
`dy/dx` `=5/(5x+2)`

Filed Under: L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Logs and Exponentials - Differentiation Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs

Calculus, 2ADV C2 2012 HSC 12ai

Differentiate with respect to `x`

`(x-1)log_ex`     (2 marks) 

Show Answer Only

 `log_ex+1-1/x`

Show Worked Solutions
`y` `=(x-1)log_ex`
`dy/dx` `=1(log_ex)+(x-1)1/x`
  `=log_ex+1-1/x`

Filed Under: L&E Differentiation (Y12), Log Calculus, Log Calculus (Y12), Logs and Exponentials - Differentiation Tagged With: Band 3, smc-964-10-Differentiation, smc-967-20-Logs, smc-967-30-Product Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in