SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C4 2022 HSC 29

  1. The diagram shows the graph of  `y=2^{-x}`. Also shown on the diagram are the first 5 of an infinite number of rectangular strips of width 1 unit and height  `y=2^{-x}`  for non-negative integer values of `x`. For example, the second rectangle shown has width 1 and height `(1)/(2)`. 
     


 

  1. The sum of the areas of the rectangles forms a geometric series.
  2. Show that the limiting sum of this series is 2. (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Show that `int_(0)^(4)2^(-x)\ dx=(15)/(16 ln 2)`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Use parts (a) and (b) to show that  `e^(15) < 2^(32)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
  3. `text{Proof (See Worked Solutions)}`
Show Worked Solution

a.   `text{Consider the rectangle heights:}`

`2^0=1, \ 2^(-1)=1/2, \ 2^(-2)= 1/4, \ 2^(-3)= 1/8, …`

`=>\ text{Rectangle Areas}\ = 1, \ 1/2, \  1/4, \ 1/8, …`

`a=1,\ \ r=1/2`

`S_oo=a/(1-r)=1/(1-1/2)=2\ \ text{… as required}`
 

b.   `text{Show}\ \ int_0^4 2^(-x)\ dx = 15/(16ln2)`

`int_0^4 2^(-x)\ dx ` `=(-1)/ln2[2^(-x)]_0^4`  
  `=(-1)/ln2(1/16-1)`  
  `=1/ln2-1/(16ln2)`  
  `=(16-1)/(16ln2)`  
  `=15/(16ln2)\ \ text{… as required}`  

 


Mean mark (b) 56%.

c.   `text{Show}\ \ e^15<2^32`

`text{Area under curve < Sum of rectangle areas}`

`15/(16ln2)` `<2`  
`15` `<32ln2`  
`15/32` `<ln2`  
`e^(15/32)` `<e^(ln2)`  
`root(32)(e^15)` `<2`  
`e^15` `<2^32\ \ text{… as required}`  

♦♦♦ Mean mark (c) 9%.

Filed Under: L&E Integration, Trapezium Rule and Newton, Trapezoidal Rule (Y12) Tagged With: Band 4, Band 6, smc-5145-04-Trapezium rule, smc-5145-30-Estimate comparison, smc-965-40-Definite Integrals, smc-976-30-Estimate Comparison

Calculus, 2ADV C4 2019 MET1-N 3

Evaluate  `int_0^1 e^x - e^-x\ dx`.  (2 marks)

Show Answers Only

`e + (1)/(e) – 2`

Show Worked Solution
`int_0^1 e^x – e^-x\ dx` `= [e^x + e^-x]_0^1`
  `= [e + (1)/(e) – (1 + 1)]`
  `= e + (1)/(e) – 2`

Filed Under: Exponential Calculus (Y12), L&E Integration Tagged With: Band 4, smc-1203-10-Exponential (Indefinite), smc-965-40-Definite Integrals

Calculus, 2ADV C4 2018 HSC 11e

Evaluate  `int_0^3 e^(5x)\ dx`.  (2 marks)

Show Answers Only

`1/5(e^15 – 1)`

Show Worked Solution
`int_0^3 e^(5x)\ dx` `= [1/5 e^(5x)]_0^3`
  `= 1/5 e^15 – 1/5 e^0`
  `= 1/5(e^15 – 1)`

Filed Under: Exponential Calculus, Exponential Calculus (Y12), L&E Integration Tagged With: Band 3, smc-1203-20-Exponential (Definite), smc-965-40-Definite Integrals

Calculus, 2ADV C4 2016 HSC 12d

  1. Differentiate  `y = xe^(3x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence find the exact value of  `int_0^2 e^(3x) (3 + 9x)\ dx`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `e^(3x) (1 + 3x)`
  2. `6e^6`
Show Worked Solution

i.  `y = xe^(3x)`

`text(Using product rule:)`

`(dy)/(dx)` `= x · 3e^(3x) + 1 · e^(3x)`
  `= e^(3x) (1 + 3x)`

 

ii.  `int_0^2 e^(3x) (3 + 9x)\ dx`

`= 3 int_0^2 e^(3x) (1 + 3x)\ dx`

`= 3 [x e^(3x)]_0^2`

`= 3 (2e^6 – 0)`

`= 6e^6`

Filed Under: Exponential Calculus, Exponential Calculus (Y12), Integrals, L&E Integration, Logs and Exponentials - Differentiation Tagged With: Band 3, Band 4, smc-1202-20-Definite Integrals, smc-1203-50-Diff then Integrate, smc-965-10-Differentiation (base e), smc-965-40-Definite Integrals, smc-965-60-Diff then integrate

Calculus, 2ADV C4 2004 HSC 3bi

Evaluate  `int_1^2 e^(3x)\ dx`.   (2 marks)

Show Answers Only

`1/3 (e^6 – e^3)`

Show Worked Solution
  `int_1^2 e^(3x)\ dx` `= 1/3 [e^(3x)]_1^2`
    `= 1/3 (e^6 – e^3)`

Filed Under: Exponential Calculus, Exponential Calculus (Y12), L&E Integration, Log Calculus Tagged With: Band 3, smc-1203-20-Exponential (Definite), smc-965-40-Definite Integrals

Copyright © 2014–2025 SmarterEd.com.au · Log in