Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `f(x)=sin(2x)`.
Find the value of `x`, for `0 < x < pi`, for which `f^(′)(x)=-sqrt3` AND `f^(″)(x)=2`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(7pi)/12`
`f^(′)(x)=2cos(2x)`
`2cos(2x)` | `=-sqrt3` | |
`cos(2x)` | `=- sqrt3/2` | |
`2x` | `=pi-pi/6,\ \ pi+pi/6` | |
`=(5pi)/6,\ \ (7pi)/6` | ||
`x` | `=(5pi)/12,\ \ (7pi)/12` |
`f^(″)(x)=-4sin(2x)`
`-4sin(2x)` | `=2` | |
`sin(2x)` | `=- 1/2` | |
`2x` | `=pi+pi/6,\ \ 2pi-pi/6` | |
`=(7pi)/6,\ \ (11pi)/6` | ||
`x` | `=(7pi)/12,\ \ (22pi)/12` |
`:.x=(7pi)/12\ \ text{(satisfies both equations)}`
Differentiate `sin x/(x + 1)` with respect to `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
`y = sin x / (x + 1)`
`text(Using)\ \ d/dx (u/v) = (u^{\prime} v – uv^{\prime})/v^2`
`u` | `= sin x` | `v` | `= x + 1` |
`u^{\prime}` | `= cos x` | `\ \ \ v^{\prime}` | `= 1` |
`:.dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
The function `f(theta) = sin^3(2 theta)`.
If `f′(theta) = 6 cos(2 theta) - 6 cos^n (2 theta)`, find the value of `n`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3`
`f(theta)` | `= sin^3(2 theta)` |
`= (sin(2theta))^3` |
`f′(theta)` | `= 3 xx 2cos(2 theta) xx sin^2(2 theta)` |
`= 6 cos(2 theta)(1 – cos^2(2 theta))` | |
`= 6 cos (2 theta) – 6 cos^3(2 theta)` |
`:. \ n = 3`
Differentiate `x^2 sin x`. (2 marks)
`x^2 ⋅ cos x + 2x sin x`
`text(Using the product rule:)`
`d/(dx) (x^2 sin x) = x^2 ⋅ cos x + 2x sin x`
What is the derivative of `sin(ln x),` where `x > 0`?
`D`
`y` | `= sin (ln x)` |
`(dy)/(dx)` | `= cos (ln x) xx d/(dx) (ln x)` |
`= cos (ln x) xx 1/x` | |
`= (cos (ln x))/x` |
`=> D`
Differentiate `(sin x)/x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x cos x – sin x)/x^2`
`y = (sin x)/x`
`text(Let)\ \ u` | `=sin x` | `u prime` | `= cos x` |
`v` | `=x` | `v prime` | `=1` |
`(dy)/(dx)` | `= (u prime v – u v prime)/v^2` |
`= (x cos x – sin x)/x^2` |
Differentiate with respect to `x`:
`(1 + sin x)^5`. (2 marks)
`5 cos x\ (1 + sinx)^4`
`y` | `= (1 + sinx)^5` |
`dy/dx` | `= 5 (1 + sinx)^4 xx d/(dx)(sinx)` |
`= 5 cos x (1 + sinx)^4` |
Differentiate with respect to `x`:
`sinx/(x+4)`. (2 marks)
`(cosx (x+4) – sin x)/((x + 4)^2)`
`y = sinx/(x + 4)`
`u` | `= sinx` | `\ \ \ \ \ u’` | `= cos x` |
`v` | `= x + 4` | `v’` | `= 1` |
`dy/dx` | `= (u’v – uv’)/v^2` |
`= (cos x (x + 4) – sin x)/(x+4)^2` |
Differentiate with respect to `x`:
`x sin x` (2 marks)
`y` | `= x sin x` |
`dy/dx` | `= x cos x + sin x xx 1` |
`= x cos x + sin x` |
Differentiate `x/sinx` with respect to `x`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(sin x\ – x cos x)/(sin^2x)`
`y = x/sinx`
`u = x` | `\ \ \ \ \ u prime = 1` |
`v = sin x` | `\ \ \ \ \ v prime = cos x` |
`text(Using)\ \ d/dx (uv) = (u prime v\ – uv prime)/(v^2),`
`dy/dx` | `= (1 * sinx \ – x * cos x)/((sin x)^2)` |
`= (sin x\ – x cos x)/(sin^2x)` |
Differentiate `(sinx -1)^8`. (2 marks)
`8cosx (sinx -1)^7`
`y= (sinx – 1)^8`
`dy/dx` | `=8 (sinx -1)^7 xx d/dx (sinx -1)` |
`=8 (sinx – 1)^7 xx cosx` | |
`=8cosx (sinx – 1)^7` |