SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C3 2022 HSC 22

Find the global maximum and minimum values of  `y=x^(3)-6x^(2)+8`, where  `-1 <= x <= 7`.   (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Global max = 57}`

`text{Global min = – 24}`

Show Worked Solution
`y` `=x^3-6x^2+8`  
`dy/dx` `=3x^2-12x`  
`(d^2y)/(dx^2)` `=6x-12`  

 
`text{SP’s when}\ \ dy/dx=0:`

`3x^2-12x` `=0`  
`3x(x-4)` `=0`  

 
`x=0\ \ text{or}\ \ 4`

`text{When}\ \ x=0,\ \ y=8,\ \ (d^2y)/(dx^2)<0`

`=>\ text{Local Max at}\ \ (0,8)`

`text{When}\ \ x=4,\ \ y=4^3-6(4^2)+8=-24,\ \ (d^2y)/(dx^2)>0`

`=>\ text{Local Min at}\ \ (4,-24)`
 

`text{Check ends of domain:}`

`text{When}\ \ x=-1,\ \ y=-1-6+8=1`

`text{When}\ \ x=7,\ \ y=7^3-6(7^2)+8=57`

`:.\ text{Global max = 57}`

`:.\ text{Global min = – 24}`

Filed Under: Curve Sketching (Y12) Tagged With: Band 4, smc-969-10-Cubic, smc-969-60-Range defined

Calculus, 2ADV C3 2020 HSC 16

Sketch the graph of the curve  `y = −x^3 + 3x^2 - 1`, labelling the stationary points and point of inflection. Do NOT determine the `x`-intercepts of the curve.  (4 marks)

Show Answers Only

Show Worked Solution
`y` `= −x^3 + 3x^2 – 1`
`(dy)/(dx)` `= −3x^2 + 6x`
`(d^2y)/(dx^2)` `= −6x + 6`

 
`text(SP’s when)\ (dy)/(dx) = 0`

`−3x^2 + 6x` `= 0`
`−3x(x – 2)` `= 0`

`x = 0\ \ text(or)\ \ 2`

 
`text(When)\ \ x = 0,`

`y = −1`

`(d^2 y)/(dx^2) = 6 > 0`

 
`:. text(MIN at)\ \ (0, −1)`
 

`text(When)\ \ x = 2,`

`y` `= −8 + 12 – 1 = 3`
`(d^2y)/(dx^2)` `= −6 xx 2 + 6 = −6 < 0`

 
`:. text(MAX at)\ \ (2, 3)`
 

`(d^2y)/(dx^2) = 0\ text(when)`

`−6x + 6` `= 0`
`x` `= 1`

 
`text(Checking change of concavity)`

`text(Concavity changes either side of)\ x = 1`

`:. text(POI at)\ (1, 1)`
 

Filed Under: Curve Sketching (Y12) Tagged With: Band 4, smc-969-10-Cubic

Calculus, 2ADV C3 2019 HSC 14b

The derivative of a function  `y = f(x)`  is given by  `f^{′}(x) = 3x^2 + 2x-1`.

  1. Find the `x`-values of the two stationary points of  `y = f(x)`, and determine the nature of the stationary points.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The curve passes through the point  `(0, 4)`.

     

    Find an expression for  `f(x)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Hence sketch the curve, clearly indicating the stationary points.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. For what values of `x` is the curve concave down?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x = 1/3\ \ text{(min)}`
    `x = -1\ \ text{(max)}`
  2. `f(x) = x^3 + x^2-x + 4`
  3. `text(See Worked Solution)`
  4. `x < -1/3`
Show Worked Solution

a.    `f^{′}(x) = 3x^2 + 2x-1`

`f^{″}(x) = 6x + 2`

`text(S.P.’s when)\ \ f^{′}(x) = 0`

`3x^2 + 2x-1` `= 0`
`(3x-1)(x + 1)` `= 0`

 
`x = 1/3 or -1`

`text(When)\ x = 1/3,`

`f^{″}(x) = 4 > 0 =>\ text(MIN)`
 

`text(When)\ x = -1,`

`f^{″}(x)= -4 < 0 =>\ text(MAX)`

 

b.    `f(x)` `= int f^{′}(x)\ dx`
    `= int 3x^2 + 2x-1\ dx`
    `= x^3 + x^2-x + c`

 
`(0, 4)\ \ text(lies on)\ \ f(x)\ \ =>\ \ c = 4`

`:. f(x) = x^3 + x^2-x + 4`

 

c.    `text(When)\ \ x = -1,\ \ y = 5`
  `text(When)\ \ x = 1/3,\ \ y = 103/27`

 

 

d.   `text(Concave down when)\ f^{″}(x) < 0`

♦ Mean mark 36%.

`6x + 2` `< 0`
`6x` `< -2`
`x` `< -1/3`

Filed Under: Curve Sketching (Y12) Tagged With: Band 3, Band 5, smc-969-10-Cubic, smc-969-40-Concavity Intervals

Calculus, 2ADV C3 2018 HSC 13a

Consider the curve  `y = 6x^2 - x^3`.

  1. Find the stationary points and determine their nature.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Given that the point  (2,16)  lies on the curve, show that it is a point of inflection.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch the curve, showing the stationary points, the point of inflection and the `x` and `y` intercepts.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(MIN at)\ (0, 0);\ text(MAX at)\ (4, 32)`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(See Worked Solutions)`
Show Worked Solution

i.    `y = 6x^2 – x^3`

`(dy)/(dx) = 12x – 3x^2`

`(d^2y)/(dx^2) = 12 – 6x`
 

`text(S.P.s occur when)\ \ (dy)/(dx) = 0`

`12x – 3x^2 = 0`

`3x(4 – x) = 0`

`x = 0 or 4`
 

`text(When)\ \ x = 0,\ (d^2y)/(dx^2) > 0`

`:.\ text(MIN at)\ (0, 0)`
 

`text(When)\ \ x = 4,\ (d^2y)/(dx^2) < 0`

`:.\ text(MAX at)\ (4, 32)`

 

ii.  `text(P.I. occur when)\ \ (d^2y)/(dx^2) = 0,`

`12 – 6x` `= 0`
`x` `= 2`

 
`text(When)\ \ x = 2,\ y = 16`

 
`text(S)text(ince the concavity changes)`

`=>\ text(P.I. occurs at)\ \ (2, 16)`

 

iii.  

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic

Calculus, 2ADV C3 2017 HSC 13b

Consider the curve  `y = 2x^3 + 3x^2 - 12x + 7`.

  1. Find the stationary points of the curve and determine their nature.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Sketch the curve, labelling the stationary points.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Hence, or otherwise, find the values of `x` for which `(dy)/(dx)` is positive.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(maximum at)\ (-2, 27)`

     

    `text(minimum at)\ (1, 0)`

  2.    
  3. `x < -2 and x > 1`
Show Worked Solution
i.   `y` `= 2x^3 + 3x^2 – 12x + 7`
  `(dy)/(dx)` `= 6x^2 + 6x – 12`
  `(d^2y)/(dx^2)` `= 12x + 6`

 

`text(S.P. when)\ (dy)/(dx)` `= 0`
`6x^2 + 6x – 12` `= 0`
`x^2 + x – 2` `= 0`
`(x + 2) (x – 1)` `= 0`

 
`x = -2 or 1`
 

`text(When)\ \ x = –2, (d^2y)/(dx^2) < 0`

`:.\ text(MAX at)\ (–2, 27)`
 

`text(When)\ \ x = 1, (d^2y)/(dx^2) > 0`

`:.\ text(MIN at)\ (1, 0)`

 

ii.  

 

iii.  `text(Solution 1)`

`text(From graph, gradient is positive for)`

`x < –2 and x > 1`

`:. (dy)/(dx) > 0\ \ text(for)\ \ x < –2 and x > 1`

 

`text(Solution 2)`

`(dy)/(dx) > 0`

`6x^2 + 6x – 12` `> 0`
`(x + 2) (x – 1)` `> 0`

 
 
`:. x < –2 and x > 1`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic, smc-969-50-Increasing/Decreasing Intervals

Calculus, 2ADV C3 2015 HSC 13c

Consider the curve  `y = x^3 − x^2 − x + 3`.

  1. Find the stationary points and determine their nature.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Given that the point  `P (1/3, 70/27)`  lies on the curve, prove that there is a point of inflection at  `P`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Sketch the curve, labelling the stationary points, point of inflection and `y`-intercept.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(MAX at)\ (-1/3, 86/27); \ text(MIN at)\ (1, 2)`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3.  
Show Worked Solution
i. `y` `= x^3 – x^2 – x + 3`
  `(dy)/(dx)` `= 3x^2 – 2x – 1`
  `(d^2y)/(dx^2)` `= 6x – 2`

`text(S.P.’s when)\ (dy)/(dx) = 0`

`3x^2 – 2x – 1` `= 0`
`(3x + 1) (x – 1)` `= 0`

`x = -1/3 or 1`

 

`text(When)\ \ x = -1/3`

`f(-1/3)` `= (-1/3)^3 – (-1/3)^2 – (-1/3) + 3`
  `= -1/27 – 1/9 + 1/3 + 3`
  `= 86/27`
`f″(-1/3)` `= (6 xx -1/3) – 2 = -4 < 0`

`:.\ text(MAX at)\ \ (-1/3, 86/27)`

 

`text(When)\ \ x = 1`

`f(1)` `= 1^3 – 1^2 – 1 + 3 =2`
`f″(1)` `= (6 xx 1) – 2 = 4 > 0`

`:.\ text(MIN at)\ \ (1, 2)`

 

ii.  `(d^2y)/(dx^2) = 0\ \ text(when)`

`6x-2` `=0`
`x` `=1/3`

 

`text(Checking change of concavity)`

`text(Concavity changes either side of)\ x = 1/3`

`:.\ (1/3, 70/27)\ \ text(is a P.I.)`

 

iii.  `text(When)\ \ x` `= 0`
`y` `= 3`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic

Calculus, 2ADV C3 2004 HSC 4b

Consider the function  `f(x) = x^3 − 3x^2`.

  1. Find the coordinates of the stationary points of the curve  `y = f(x)`  and determine their nature.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Sketch the curve showing where it meets the axes.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Find the values of  `x`  for which the curve  `y = f(x)`  is concave up.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(MAX at)\ (0,0),\ \ text(MIN at)\ (2,-4)`
  2.  
    1. Geometry and Calculus, 2UA 2004 HSC 4b Answer
  3. `f(x)\ text(is concave up when)\ x>1`
Show Worked Solution
(i)    `f(x)` `= x^3 – 3x^2`
  `f'(x)` `= 3x^2 – 6x`
  `f″(x)` `= 6x – 6`

 

`text(S.P.’s  when)\ \ f'(x) = 0`

`3x^2 – 6x` `= 0`
`3x (x – 2)` `= 0`
`x` `= 0\ \ text(or)\ \ 2`

 

`text(When)\ x = 0`

`f(0)` `= 0`
`f″(0)` `= 0 – 6 = -6 < 0`
`:.\ text(MAX at)\ (0,0)`

 

`text(When)\ x = 2`

`f(2)` `= 2^3 – (3 xx 4) = -4`
`f″(2)` `= (6 xx 2) – 6 = 6 > 0`
`:.\ text(MIN at)\ (2, -4)`

 

(ii)   `f(x) = x^3 – 3x^2\ text(meets the)\ x text(-axis when)\ f(x) = 0`
`x^3 – 3x^2` `= 0`
`x^2 (x-3)` `= 0`
`x` `= 0\ \ text(or)\ \ 3`

 Geometry and Calculus, 2UA 2004 HSC 4b Answer

(iii)   `f(x)\ text(is concave up when)`
`f″(x)` `>0`
`6x – 6` `>0`
`6x` `>6`
`x` `>1`

 

`:. f(x)\ text(is concave up when)\ \ x>1`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, Band 5, page-break-before-solution, smc-969-10-Cubic, smc-969-40-Concavity Intervals

Calculus, 2ADV C3 2005 HSC 4b

A function  `f(x)`  is defined by  `f(x) = (x + 3)(x^2- 9)`.

  1. Find all solutions of  `f(x) = 0`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the turning points of the graph of  `y = f(x)`, and determine their nature.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Hence sketch the graph of  `y = f(x)`, showing the turning points and the points where the curve meets the `x`-axis.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. For what values of `x` is the graph of  `y = f(x)`  concave down?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `−3 or 3`
  2. `text{53.2 cm  (to 1 d.p.)}`
  3. `text(See worked solutions)`
  4. `x < −1`
Show Worked Solutions
i.    `f(x)` `= (x + 3)(x^2 − 9)`
    `= (x + 3)(x +3)(x − 3)`
  `:. f(x)` `= 0\ text(when)\ \ x=–3\ text(or)\ 3`

 

ii.   `f (x)` `= (x +3)(x^2 − 9)`
    `= x^3 − 9x + 3x^2 − 27`
    `= x^3 + 3x^2 − 9x − 27`
  `f′(x)` `= 3x^2 + 6x − 9`
  `f″(x)` `= 6x + 6`

 

`text(S.P.’s  when)\ \ f′(x) = 0`

`3x^2 + 6x − 9` `= 0`
`3(x^2 + 2x − 3)` `= 0`
`3(x − 1)(x + 3)` `= 0`

 

`text(At)\ x =1`

`f(1)` `= (4)(−8)=−32`
 `f″(1)` `= 6 + 6=12>0`
`:.\ text(MIN at)\ (1, −32)` 

 

`text(At)\ x = −3`

`f(-3)` `= 0`
`f″(−3)` `= (6 xx −3) + 6 = −12 <0`
`:.\ text(MAX at)\ (−3, 0)`

 

iii.   Geometry and Calculus, 2UA 2005 HSC 4b Answer

 

iv.  `f(x)\ \ text(is concave down when)`

`f″(x)` `< 0`
`6x + 6` `< 0`
`6x` `< −6`
`x` `< −1`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic, smc-969-40-Concavity Intervals

Calculus, 2ADV C3 2006 HSC 5a

A function  `f(x)`  is defined by  `f(x) =2x^2(3-x)`.

  1. Find the coordinates of the turning points of  `y =f(x)`  and determine their nature.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the point of inflection.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Hence sketch the graph of  `y =f(x)`, showing the turning points, the point of inflection and the points where the curve meets the `x`-axis.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. What is the minimum value of  `f(x)`  for  `–1 ≤ x ≤4`?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Min)\ (0, 0),\ text(Max)\ (2, 8)`
  2. `text(P.I. at)\ (1, 4)`
  3.  
  4. `-32`
Show Worked Solution
i.       `f(x)` `= 2x^2 (3-x)`
  `= 6x^2-2x^3`
`f^{prime} (x)` `= 12x-6x^2`
`f^{″}(x)` `= 12-12x`

 

`text(S.P.’s when)\ f^{′}(x) = 0`

`12x-6x^2` `= 0`
`6x(2-x)` `= 0`

`x = 0 or 2`

`text(When)\ x = 0`

`f(0)` `= 0`
`f^{″}(0)` `= 12-0 = 12 > 0`
`:.\ text(MIN at)\ (0, 0)`

 

`text(When)\ x = 2`

`f(2)` `= 2 xx 2^2 (3-2)` `= 8`
`f^{″}(2)` `= 12-(12 xx 2)` `= -12 < 0`
`:.\ text(MAX at)\ (2, 8)`

 

ii.  `text(P.I. when)\ f^{″}(x) = 0`

`12-12x` `= 0`
`12x` `= 12`
`x` `= 1`
`f^{″}(0.5)` `=6>0`
`f^{″}(1.5)` `=-6<0`

`text(S)text(ince concavity changes)\ \ =>\  text(P.I. exists)` 

`f(1)` `= 2 xx 1^2(3-1)`
  `= 4`

`:.\ text(P.I. at)\ (1, 4)`

 

iii.  `f(x)\ text(meets)\ x text(-axis when)\ f(x) = 0`

`2x^2 xx (3-x) = 0`

`x = 0 or 3`

2UA HSC 2006 5a

 

(iv)  `text(The graph clearly shows that in the given range)`

`-1<= x<=4,\ text(the minimum will occur when)\ x = 4`

`:.\ text(Minimum` `= 2 xx 4^2 (3-4)`
  `= -32`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic, smc-969-60-Range defined

Calculus, 2ADV C3 2009 HSC 10

`text(Let)\ \ f(x) = x - (x^2)/2 + (x^3)/3`

  1. Show that the graph of  `y = f(x)`  has no turning points.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the point of inflection of  `y = f(x)`.     (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. i. Show that `1 - x + x^2 - 1/(1 + x) = (x^3)/(1 + x)`  for  `x != -1`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     

    ii. Let  `g(x) = ln (1 + x)`.

     

        Use the result in part c.i. to show that  `f prime (x) >= g prime (x)`  for all  `x >= 0`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  1. Sketch the graphs of  `y = f(x)`  and  `y = g(x)`  for  `x >= 0`.    (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Show that  `d/(dx) [(1 + x) ln (1 + x) - (1 + x)] = ln (1 + x)`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Find the area enclosed by the graphs of  `y = f(x)`  and  `y = g(x)`, and the straight line  `x = 1`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof  (See Worked Solutions)}`
  2. `(1/2, 5/12)`
  3. i. `text{Proof  (See Worked Solutions)}`

     

    ii. `text{Proof  (See Worked Solutions)}` 

  4.  
        Geometry and Calculus, 2UA 2009 HSC 10 Answer
  5. `text{Proof  (See Worked Solutions)}`
  6. `1 5/12\ – 2ln2\ \ text(u²)`
Show Worked Solution
a.    `f(x) = x\ – (x^2)/2 + (x^3)/3`
♦♦ Mean mark 28% for all of Q10 (note that data for each question part is not available).
 

`text(Turning points when)\ f prime (x) = 0`

`f prime (x) = 1\ – x + x^2`

`x^2\ – x + 1 = 0`

`text(S)text(ince)\ \ Delta` `= b^2\ – 4ac`
  `= (–1)^2\ – 4 xx 1 xx 1`
  `= -3 < 0 => text(No solution)`

 
`:.\ f(x)\ text(has no turning points)`

 

b.    `text(P.I. when)\ f″(x) = 0`
`f″(x)` `= -1 + 2x = 0`
`2x` `= 1`
`x` `= 1/2`

`text(Check for change in concavity)`

`f″(1/4)` `= -1/2 < 0`
`f″(3/4)` `= 1/2 > 0`

`=>\ text(Change in concavity)`

`:.\ text(P.I. at)\ \ x = 1/2`

 

`f(1/2)` `= 1/2\ – ((1/2)^2)/2 + ((1/2)^3)/3`
  `= 1/2\ – 1/8 + 1/24`
  `= 5/12`

`:.\ text(Point of Inflection at)\ (1/2, 5/12)`

 

c.i.    `text(Show)\ 1\ – x + x^2\ – 1/(1 + x) = (x^3)/(1 + x),\ \ \ x != -1` 
`text(LHS)` `= (1+x)/(1+x)\ – (x(1+x))/(1+x) + (x^2(1+x))/((1+x))\ – 1/(1+x)`
  `= (1 + x\ – x\ – x^2 + x^2 + x^3\ – 1)/(1+x)`
  `= (x^3)/(1+x)\ \ \ text(… as required)`

 

c.ii.   `text(Let)\ g(x) = ln(1+x)`
  `g prime (x) = 1/(1 + x)`
`f prime (x)\ – g prime (x)` `= 1\ – x + x^2\ – 1/(1+x)`
  `= (x^3)/(1 + x)\ \ text{(using part (i))}`

`text(S)text(ince)\ (x^3)/(1 + x) >= 0\ text(for)\ x >= 0`

`f prime (x)\ – g prime (x) >= 0`
`f prime (x) >= g prime (x)\ text(for)\ x >= 0`
MARKER’S COMMENT: When 2 graphs are drawn on the same set of axes, you must label them. 
 

d. 

Geometry and Calculus, 2UA 2009 HSC 10 Answer

e.    `text(Show)\ d/(dx) [(1 + x) ln (1 + x)\ – (1 + x)] = ln (1 + x)`
  `text(Using)\ d/(dx) uv=uv′+vu′`
`text(LHS)` `= (1+x) xx 1/(1 + x) + ln(1+x)xx1 +  – 1`
  `= 1+ ln(1+x)\ – 1`
  `= ln(1+x)`
  `=\ text(RHS    … as required)`

 

f.    `text(Area)` `= int_0^1 f(x)\ – g(x)\ dx`
    `= int_0^1 (x\ – (x^2)/2 + (x^3)/3\ – ln(x+1))\ dx`
    `= [x^2/2\ – x^3/6 + (x^4)/12\ – (1 + x) ln (1+x) + (1+x)]_0^1`
    `text{(using part (e) above)}`
    `= [(1/2 – 1/6 + 1/12 – (2)ln2 + 2) – (ln1 + 1)]`
    `= 5/12\ – 2ln2 + 2\ – 1`
    `= 1 5/12\ – 2 ln 2\ \ text(u²)`

Filed Under: Applied Calculus (L&E), Areas Under Curves, Areas Under Curves (Y12), Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, Band 6, smc-969-10-Cubic, smc-969-30-Other Graphs, smc-975-60-Other

Calculus, 2ADV C3 2010 HSC 6a

Let  `f(x) = (x + 2)(x^2 + 4)`.

  1. Show that the graph  `y=f(x)`  has no stationary points.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the values of  `x`  for which the graph  `y=f(x)`  is concave down, and the values for which it is concave up.    (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Sketch the graph  `y=f(x)`,  indicating the values of the  `x`  and  `y` intercepts.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)  text{(See Worked Solutions)}`
  2.  `f(x)\ text(is concave down when)\ x < -2/3`

     

    `f(x)\ text(is concave up when)\ x > -2/3`

  3.  
Show Worked Solution

i.  `text(Need to show no  S.P.’s)`

`f(x)` `= (x+2)(x^2 + 4)`
  `=x^3 + 2x^2 + 4x + 8`
`f prime (x)` `= 3x^2 + 4x + 4`

 

`text(S.P.s  occur when)\ \ f prime (x) =0,`

`3x^2 + 4x + 4 =0`

`Delta` `= b^2\ – 4ac`
  `=4^2\ – (4 xx 3 xx 4)`
  `=16\ – 48`
  `= -32 < 0`

 

`text(S)text(ince)\ \ Delta < 0,\ \ text(No Solution)`

`:.\ text(No  S.P.’s  for)\ \ f(x)`

 

ii.  `f(x)\ text(is concave down when)\ f″(x) < 0`

MARKER’S COMMENT: The significance of the sign of the second derivative was not well understood by most students.

`f″(x) = 6x + 4`

`=> 6x + 4` `< 0`
`6x` `< -4`
`x` `< -2/3`

`:.\ f(x)\ text(is concave down when)\ x < -2/3`

`f(x)\ text(is concave up when)\ f″(x) > 0`

`f″(x) = 6x + 4`

`=> 6x + 4` `> 0`
`6x` `> -4`
`x` `> -2/3`

`:. f(x)\ text(is concave up when)\ x > -2/3`

 

♦♦ Mean mark 33%.
MARKER’S COMMENT: Students are reminded to bring a ruler to the exam and use it to draw the axes for graphing and to help with an appropriate scale.

iii.  `y text(-intercept) =2 xx4=8`

`x text(-intercept)=–2` 

 

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, smc-969-10-Cubic, smc-969-40-Concavity Intervals

Calculus, 2ADV C3 2011 HSC 7a

Let  `f(x) = x^3-3x + 2`. 

  1. Find the coordinates of the stationary points of  `y = f(x)`, and determine their nature.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Hence, sketch the graph  `y = f(x)`  showing all stationary points and the  `y`-intercept.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(MIN at)\ \ (1,0);\ text(MAX at)\ \ (–1,4)`
  2.  
    Geometry and Calculus, 2UA 2011 HSC 7a
Show Worked Solution
i.    `f(x)` `= x^3-3x + 2`
  `f^{′}(x)` `= 3x^2-3`
  `f^{″}(x)` `=6x`

 

`text(Stationary points when)\ f prime (x) = 0`

`3x^2-3` `=0`
`3 (x^2-1)` `= 0`
`:. x^2` `=1`
`x` `=+- 1`

 
`text(When)\ x = 1`

`f(1)` `= 1-3 + 2 = 0`
`f^{″}(1)` `= 6 > 0` 
`:.\ text(MIN S.P. at)\ \ (1,0)`

 

`text(When)\ \ x= -1`

`f(–1)` `= -1 + 3 + 2 = 4`
`f^{″}(–1)` `= –6 < 0`
`:.\ text(MAX S.P. at)\ \ (–1,4)`
MARKER’S COMMENT: Graphs should be large (around ½ page), axes drawn with a ruler, with intercepts and turning points clearly shown. The scale can be different on each axe for clarity, as shown in the Worked Solution.

 

ii.    `y = x^3-3x + 2`
  `y text(-intercept) = 2`

Geometry and Calculus, 2UA 2011 HSC 7a

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, smc-969-10-Cubic

Copyright © 2014–2025 SmarterEd.com.au · Log in