Find the global maximum and minimum values of `y=x^(3)-6x^(2)+8`, where `-1 <= x <= 7`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the global maximum and minimum values of `y=x^(3)-6x^(2)+8`, where `-1 <= x <= 7`. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Global max = 57}`
`text{Global min = – 24}`
`y` | `=x^3-6x^2+8` | |
`dy/dx` | `=3x^2-12x` | |
`(d^2y)/(dx^2)` | `=6x-12` |
`text{SP’s when}\ \ dy/dx=0:`
`3x^2-12x` | `=0` | |
`3x(x-4)` | `=0` |
`x=0\ \ text{or}\ \ 4`
`text{When}\ \ x=0,\ \ y=8,\ \ (d^2y)/(dx^2)<0`
`=>\ text{Local Max at}\ \ (0,8)`
`text{When}\ \ x=4,\ \ y=4^3-6(4^2)+8=-24,\ \ (d^2y)/(dx^2)>0`
`=>\ text{Local Min at}\ \ (4,-24)`
`text{Check ends of domain:}`
`text{When}\ \ x=-1,\ \ y=-1-6+8=1`
`text{When}\ \ x=7,\ \ y=7^3-6(7^2)+8=57`
`:.\ text{Global max = 57}`
`:.\ text{Global min = – 24}`
Sketch the graph of the curve `y = −x^3 + 3x^2 - 1`, labelling the stationary points and point of inflection. Do NOT determine the `x`-intercepts of the curve. (4 marks)
`y` | `= −x^3 + 3x^2 – 1` |
`(dy)/(dx)` | `= −3x^2 + 6x` |
`(d^2y)/(dx^2)` | `= −6x + 6` |
`text(SP’s when)\ (dy)/(dx) = 0`
`−3x^2 + 6x` | `= 0` |
`−3x(x – 2)` | `= 0` |
`x = 0\ \ text(or)\ \ 2`
`text(When)\ \ x = 0,`
`y = −1`
`(d^2 y)/(dx^2) = 6 > 0`
`:. text(MIN at)\ \ (0, −1)`
`text(When)\ \ x = 2,`
`y` | `= −8 + 12 – 1 = 3` |
`(d^2y)/(dx^2)` | `= −6 xx 2 + 6 = −6 < 0` |
`:. text(MAX at)\ \ (2, 3)`
`(d^2y)/(dx^2) = 0\ text(when)`
`−6x + 6` | `= 0` |
`x` | `= 1` |
`text(Checking change of concavity)`
`text(Concavity changes either side of)\ x = 1`
`:. text(POI at)\ (1, 1)`
The derivative of a function `y = f(x)` is given by `f prime(x) = 3x^2 + 2x - 1`.
--- 6 WORK AREA LINES (style=lined) ---
Find an expression for `f(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. `f prime(x) = 3x^2 + 2x – 1`
`f″(x) = 6x + 2`
`text(S.P.’s when)\ \ f prime(x) = 0`
`3x^2 + 2x – 1` | `= 0` |
`(3x – 1)(x + 1)` | `= 0` |
`x = 1/3 or -1`
`text(When)\ x = 1/3,`
`f″(x) = 4 > 0 =>\ text(MIN)`
`text(When)\ x = -1,`
`f″(x)= -4 < 0 =>\ text(MAX)`
b. | `f(x)` | `= int f prime(x)\ dx` |
`= int 3x^2 + 2x – 1\ dx` | ||
`= x^3 + x^2 – x + c` |
`(0, 4)\ \ text(lies on)\ \ f(x)\ \ =>\ \ c = 4`
`:. f(x) = x^3 + x^2 – x + 4`
c. | `text(When)\ \ x = -1,\ \ y = 5` |
`text(When)\ \ x = 1/3,\ \ y = 103/27` |
d. `text(Concave down when)\ f″(x) < 0`
`6x + 2` | `< 0` |
`6x` | `< -2` |
`x` | `< -1/3` |
Consider the curve `y = 6x^2 - x^3`.
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `y = 6x^2 – x^3`
`(dy)/(dx) = 12x – 3x^2`
`(d^2y)/(dx^2) = 12 – 6x`
`text(S.P.s occur when)\ \ (dy)/(dx) = 0`
`12x – 3x^2 = 0`
`3x(4 – x) = 0`
`x = 0 or 4`
`text(When)\ \ x = 0,\ (d^2y)/(dx^2) > 0`
`:.\ text(MIN at)\ (0, 0)`
`text(When)\ \ x = 4,\ (d^2y)/(dx^2) < 0`
`:.\ text(MAX at)\ (4, 32)`
ii. `text(P.I. occur when)\ \ (d^2y)/(dx^2) = 0,`
`12 – 6x` | `= 0` |
`x` | `= 2` |
`text(When)\ \ x = 2,\ y = 16`
`text(S)text(ince the concavity changes)`
`=>\ text(P.I. occurs at)\ \ (2, 16)`
iii. |
Consider the curve `y = 2x^3 + 3x^2 - 12x + 7`.
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
i. | `y` | `= 2x^3 + 3x^2 – 12x + 7` |
`(dy)/(dx)` | `= 6x^2 + 6x – 12` | |
`(d^2y)/(dx^2)` | `= 12x + 6` |
`text(S.P. when)\ (dy)/(dx)` | `= 0` |
`6x^2 + 6x – 12` | `= 0` |
`x^2 + x – 2` | `= 0` |
`(x + 2) (x – 1)` | `= 0` |
`x = -2 or 1`
`text(When)\ \ x = –2, (d^2y)/(dx^2) < 0`
`:.\ text(MAX at)\ (–2, 27)`
`text(When)\ \ x = 1, (d^2y)/(dx^2) > 0`
`:.\ text(MIN at)\ (1, 0)`
ii. |
iii. `text(Solution 1)`
`text(From graph, gradient is positive for)`
`x < –2 and x > 1`
`:. (dy)/(dx) > 0\ \ text(for)\ \ x < –2 and x > 1`
`text(Solution 2)`
`(dy)/(dx) > 0`
`6x^2 + 6x – 12` | `> 0` |
`(x + 2) (x – 1)` | `> 0` |
Consider the curve `y = x^3 − x^2 − x + 3`.
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `y` | `= x^3 – x^2 – x + 3` |
`(dy)/(dx)` | `= 3x^2 – 2x – 1` | |
`(d^2y)/(dx^2)` | `= 6x – 2` |
`text(S.P.’s when)\ (dy)/(dx) = 0`
`3x^2 – 2x – 1` | `= 0` |
`(3x + 1) (x – 1)` | `= 0` |
`x = -1/3 or 1`
`text(When)\ \ x = -1/3`
`f(-1/3)` | `= (-1/3)^3 – (-1/3)^2 – (-1/3) + 3` |
`= -1/27 – 1/9 + 1/3 + 3` | |
`= 86/27` | |
`f″(-1/3)` | `= (6 xx -1/3) – 2 = -4 < 0` |
`:.\ text(MAX at)\ \ (-1/3, 86/27)`
`text(When)\ \ x = 1`
`f(1)` | `= 1^3 – 1^2 – 1 + 3 =2` |
`f″(1)` | `= (6 xx 1) – 2 = 4 > 0` |
`:.\ text(MIN at)\ \ (1, 2)`
ii. `(d^2y)/(dx^2) = 0\ \ text(when)`
`6x-2` | `=0` |
`x` | `=1/3` |
`text(Checking change of concavity)`
`text(Concavity changes either side of)\ x = 1/3`
`:.\ (1/3, 70/27)\ \ text(is a P.I.)`
iii. `text(When)\ \ x` | `= 0` |
`y` | `= 3` |
Consider the function `f(x) = x^3 − 3x^2`.
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
(i) | `f(x)` | `= x^3 – 3x^2` |
`f'(x)` | `= 3x^2 – 6x` | |
`f″(x)` | `= 6x – 6` |
`text(S.P.’s when)\ \ f'(x) = 0`
`3x^2 – 6x` | `= 0` |
`3x (x – 2)` | `= 0` |
`x` | `= 0\ \ text(or)\ \ 2` |
`text(When)\ x = 0`
`f(0)` | `= 0` |
`f″(0)` | `= 0 – 6 = -6 < 0` |
`:.\ text(MAX at)\ (0,0)` |
`text(When)\ x = 2`
`f(2)` | `= 2^3 – (3 xx 4) = -4` |
`f″(2)` | `= (6 xx 2) – 6 = 6 > 0` |
`:.\ text(MIN at)\ (2, -4)` |
(ii) | `f(x) = x^3 – 3x^2\ text(meets the)\ x text(-axis when)\ f(x) = 0` |
`x^3 – 3x^2` | `= 0` |
`x^2 (x-3)` | `= 0` |
`x` | `= 0\ \ text(or)\ \ 3` |
(iii) | `f(x)\ text(is concave up when)` |
`f″(x)` | `>0` |
`6x – 6` | `>0` |
`6x` | `>6` |
`x` | `>1` |
`:. f(x)\ text(is concave up when)\ \ x>1`
A function `f(x)` is defined by `f(x) = (x + 3)(x^2- 9)`.
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. | `f(x)` | `= (x + 3)(x^2 − 9)` |
`= (x + 3)(x +3)(x − 3)` | ||
`:. f(x)` | `= 0\ text(when)\ \ x=–3\ text(or)\ 3` |
ii. | `f (x)` | `= (x +3)(x^2 − 9)` |
`= x^3 − 9x + 3x^2 − 27` | ||
`= x^3 + 3x^2 − 9x − 27` | ||
`f′(x)` | `= 3x^2 + 6x − 9` | |
`f″(x)` | `= 6x + 6` |
`text(S.P.’s when)\ \ f′(x) = 0`
`3x^2 + 6x − 9` | `= 0` |
`3(x^2 + 2x − 3)` | `= 0` |
`3(x − 1)(x + 3)` | `= 0` |
`text(At)\ x =1`
`f(1)` | `= (4)(−8)=−32` |
`f″(1)` | `= 6 + 6=12>0` |
`:.\ text(MIN at)\ (1, −32)` |
`text(At)\ x = −3`
`f(-3)` | `= 0` |
`f″(−3)` | `= (6 xx −3) + 6 = −12 <0` |
`:.\ text(MAX at)\ (−3, 0)` |
iii. |
iv. `f(x)\ \ text(is concave down when)`
`f″(x)` | `< 0` |
`6x + 6` | `< 0` |
`6x` | `< −6` |
`x` | `< −1` |
A function `f(x)` is defined by `f(x) =2x^2(3 - x)`.
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `f(x)` | `= 2x^2 (3 – x)` |
`= 6x^2 – 2x^3` | |
`f prime (x)` | `= 12x – 6x^2` |
`f″(x)` | `= 12 – 12x` |
`text(S.P.’s when)\ f′(x) = 0`
`12x – 6x^2` | `= 0` |
`6x(2 – x)` | `= 0` |
`x = 0 or 2`
`text(When)\ x = 0`
`f(0)` | `= 0` |
`f″(0)` | `= 12 – 0 = 12 > 0` |
`:.\ text(MIN at)\ (0, 0)` |
`text(When)\ x = 2`
`f(2)` | `= 2 xx 2^2 (3 – 2)` | `= 8` |
`f″(2)` | `= 12 – (12 xx 2)` | `= -12 < 0` |
`:.\ text(MAX at)\ (2, 8)` |
ii. `text(P.I. when)\ f″(x) = 0`
`12 – 12x` | `= 0` |
`12x` | `= 12` |
`x` | `= 1` |
`f″(0.5)` | `=6>0` |
`f″(1.5)` | `=-6<0` |
`text(S)text(ince concavity changes)\ \ =>\ text(P.I. exists)`
`f(1)` | `= 2 xx 1^2(3 – 1)` |
`= 4` |
`:.\ text(P.I. at)\ (1, 4)`
iii. `f(x)\ text(meets)\ x text(-axis when)\ f(x) = 0`
`2x^2 xx (3 – x) = 0`
`x = 0 or 3`
(iv) `text(The graph clearly shows that in the given range)`
`-1<= x<=4,\ text(the minimum will occur when)\ x = 4`
`:.\ text(Minimum` | `= 2 xx 4^2 (3 – 4)` |
`= -32` |
`text(Let)\ \ f(x) = x - (x^2)/2 + (x^3)/3`
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
ii. Let `g(x) = ln (1 + x)`.
Use the result in part c.i. to show that `f prime (x) >= g prime (x)` for all `x >= 0`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. | `f(x) = x\ – (x^2)/2 + (x^3)/3` |
`text(Turning points when)\ f prime (x) = 0`
`f prime (x) = 1\ – x + x^2`
`x^2\ – x + 1 = 0`
`text(S)text(ince)\ \ Delta` | `= b^2\ – 4ac` |
`= (–1)^2\ – 4 xx 1 xx 1` | |
`= -3 < 0 => text(No solution)` |
`:.\ f(x)\ text(has no turning points)`
b. | `text(P.I. when)\ f″(x) = 0` |
`f″(x)` | `= -1 + 2x = 0` |
`2x` | `= 1` |
`x` | `= 1/2` |
`text(Check for change in concavity)`
`f″(1/4)` | `= -1/2 < 0` |
`f″(3/4)` | `= 1/2 > 0` |
`=>\ text(Change in concavity)`
`:.\ text(P.I. at)\ \ x = 1/2`
`f(1/2)` | `= 1/2\ – ((1/2)^2)/2 + ((1/2)^3)/3` |
`= 1/2\ – 1/8 + 1/24` | |
`= 5/12` |
`:.\ text(Point of Inflection at)\ (1/2, 5/12)`
c.i. | `text(Show)\ 1\ – x + x^2\ – 1/(1 + x) = (x^3)/(1 + x),\ \ \ x != -1` |
`text(LHS)` | `= (1+x)/(1+x)\ – (x(1+x))/(1+x) + (x^2(1+x))/((1+x))\ – 1/(1+x)` |
`= (1 + x\ – x\ – x^2 + x^2 + x^3\ – 1)/(1+x)` | |
`= (x^3)/(1+x)\ \ \ text(… as required)` |
c.ii. | `text(Let)\ g(x) = ln(1+x)` |
`g prime (x) = 1/(1 + x)` |
`f prime (x)\ – g prime (x)` | `= 1\ – x + x^2\ – 1/(1+x)` |
`= (x^3)/(1 + x)\ \ text{(using part (i))}` |
`text(S)text(ince)\ (x^3)/(1 + x) >= 0\ text(for)\ x >= 0`
`f prime (x)\ – g prime (x) >= 0` |
`f prime (x) >= g prime (x)\ text(for)\ x >= 0` |
d. |
e. | `text(Show)\ d/(dx) [(1 + x) ln (1 + x)\ – (1 + x)] = ln (1 + x)` |
`text(Using)\ d/(dx) uv=uv′+vu′` |
`text(LHS)` | `= (1+x) xx 1/(1 + x) + ln(1+x)xx1 + – 1` |
`= 1+ ln(1+x)\ – 1` | |
`= ln(1+x)` | |
`=\ text(RHS … as required)` |
f. | `text(Area)` | `= int_0^1 f(x)\ – g(x)\ dx` |
`= int_0^1 (x\ – (x^2)/2 + (x^3)/3\ – ln(x+1))\ dx` | ||
`= [x^2/2\ – x^3/6 + (x^4)/12\ – (1 + x) ln (1+x) + (1+x)]_0^1` | ||
`text{(using part (e) above)}` | ||
`= [(1/2 – 1/6 + 1/12 – (2)ln2 + 2) – (ln1 + 1)]` | ||
`= 5/12\ – 2ln2 + 2\ – 1` | ||
`= 1 5/12\ – 2 ln 2\ \ text(u²)` |
Let `f(x) = (x + 2)(x^2 + 4)`.
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Need to show no S.P.’s)`
`f(x)` | `= (x+2)(x^2 + 4)` |
`=x^3 + 2x^2 + 4x + 8` | |
`f prime (x)` | `= 3x^2 + 4x + 4` |
`text(S.P.s occur when)\ \ f prime (x) =0,`
`3x^2 + 4x + 4 =0`
`Delta` | `= b^2\ – 4ac` |
`=4^2\ – (4 xx 3 xx 4)` | |
`=16\ – 48` | |
`= -32 < 0` |
`text(S)text(ince)\ \ Delta < 0,\ \ text(No Solution)`
`:.\ text(No S.P.’s for)\ \ f(x)`
ii. `f(x)\ text(is concave down when)\ f″(x) < 0`
`f″(x) = 6x + 4`
`=> 6x + 4` | `< 0` |
`6x` | `< -4` |
`x` | `< -2/3` |
`:.\ f(x)\ text(is concave down when)\ x < -2/3`
`f(x)\ text(is concave up when)\ f″(x) > 0`
`f″(x) = 6x + 4`
`=> 6x + 4` | `> 0` |
`6x` | `> -4` |
`x` | `> -2/3` |
`:. f(x)\ text(is concave up when)\ x > -2/3`
iii. `y text(-intercept) =2 xx4=8`
`x text(-intercept)=–2`
Let `f(x) = x^3-3x + 2`.
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `f(x)` | `= x^3-3x + 2` |
`f^{′}(x)` | `= 3x^2-3` | |
`f^{″}(x)` | `=6x` |
`text(Stationary points when)\ f prime (x) = 0`
`3x^2-3` | `=0` |
`3 (x^2-1)` | `= 0` |
`:. x^2` | `=1` |
`x` | `=+- 1` |
`text(When)\ x = 1`
`f(1)` | `= 1-3 + 2 = 0` |
`f^{″}(1)` | `= 6 > 0` |
`:.\ text(MIN S.P. at)\ \ (1,0)` |
`text(When)\ \ x= -1`
`f(–1)` | `= -1 + 3 + 2 = 4` |
`f^{″}(–1)` | `= –6 < 0` |
`:.\ text(MAX S.P. at)\ \ (–1,4)` |
ii. | `y = x^3-3x + 2` |
`y text(-intercept) = 2` |