SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C3 2025 HSC 16

Consider the function  \(f(x)=\dfrac{x^2}{e^x}\).

  1. Find the stationary points of the function and determine their nature.   (4 marks)

    --- 14 WORK AREA LINES (style=lined) ---

  2. A partially completed graph of  \(f(x)=\dfrac{x^2}{e^x}\)  is shown.
  3. Use your answer from part (a) to complete the graph.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---


     

Show Answers Only

a.   \(\text{MIN at}\ \ (0,0)\)

\(\text{MAX at}\ \ \left(2,\dfrac{4}{e^2}\right)\)

b.   
     

Show Worked Solution
a.     \(f(x)\) \(=\dfrac{x^2}{e^x}\)
  \(f^{\prime}(x)\) \(=2 x \cdot e^x-e^x \cdot x^2\)
    \(=\dfrac{x e^x(2-x)}{e^{2 x}}\)
    \(=\dfrac{x(2-x)}{e^x}\)

 
\(\text{Find} \ x\ \text{when} \ \ f^{\prime}(x)=0:\)

\(x(2-x)=0\)

\(x=0 \ \text {or} \ 2\)

\(\text{When} \ \ x=0 \ \Rightarrow \ f(0)=0\)

\(\text {When}\ \  x=2 \ \Rightarrow \ f(2)=\dfrac{4}{e^2}\)

\(\text {Checking nature of SP’s:}\)

\begin{array}{|c|c|c|c|c|c|}
\hline x & -1 & 0 & 1 & 2 & 3 \\
\hline f^{\prime}(x) & -3 e & 0 & \dfrac{1}{e} & 0 & -\dfrac{3}{e^3} \\
\hline
\end{array}

\(\therefore \ \text{MIN at}\ \ (0,0)\)

\(\quad \ \ \text{MAX at}\ \ \left(2,\dfrac{4}{e^2}\right)\)
 

b.
     

Filed Under: Curve Sketching (Y12) Tagged With: Band 4, smc-969-30-Other Graphs

Calculus, 2ADV C3 2023 HSC 30

Let  \(f(x)=e^{-x} \sin x\).

  1. Find the coordinates of the stationary points of \(f(x)\) for  \(0\leq x\leq 2\pi\). You do NOT need to check the nature of the stationary points.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Without using any further calculus, sketch the graph of  \(y=f(x)\), for  \(0\leq x\leq 2\pi\), showing stationary points and intercepts.  (2 marks)
     


--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \( \Big(\dfrac{\pi}{4},\dfrac{1}{\sqrt2 \times e^{\frac{\pi}{4}}}\Big)\ \text{and}\  \Big(\dfrac{5\pi}{4},\dfrac{-1}{\sqrt2 \times e^{\frac{5\pi}{4}}}\Big)\)

b.    
         

Show Worked Solution

a.    \(f(x)=e^{-x} \sin x\)

\(f^{′}(x)=e^{-x} \cos x-e^{-x} \sin x = e^{-x}( \cos x-\sin x) \)

\(\text{SPs when}\ f^{′}(x)=0: \)

\(e^{-x}=0\ \ \rightarrow \ \text{no solution} \)

\(\cos x-\sin x\) \(=0\)  
\(1-\tan x\) \(=0\)  
\(\tan\) \(=1\)  
Mean mark (a) 54%.

\(x=\dfrac{\pi}{4}, \dfrac{5\pi}{4} \)
 

\(f(\dfrac{\pi}{4})=e^{-\frac{\pi}{4}}\sin \frac{\pi}{4}=\dfrac{1}{\sqrt2 \times e^{\frac{\pi}{4}}} \)

\(f(\dfrac{5\pi}{4})=e^{-\frac{5\pi}{4}}\sin \frac{5\pi}{4}=\dfrac{-1}{\sqrt2 \times e^{\frac{5\pi}{4}}} \)
 

\(\therefore\ \text{SPs at}\ \Big(\dfrac{\pi}{4},\dfrac{1}{\sqrt2 \times e^{\frac{\pi}{4}}}\Big)\ \text{and}\  \Big(\dfrac{5\pi}{4},\dfrac{-1}{\sqrt2 \times e^{\frac{5\pi}{4}}}\Big)\)

 
b.
    \(\ x\text{-intercepts at}\ \ x=0, \pi,\ 2\pi \)
 

 

♦♦ Mean mark (b) 34%.

Filed Under: Curve Sketching (Y12), Graphs and Applications (Y11) Tagged With: Band 4, Band 5, smc-966-10-Exponential graphs, smc-969-30-Other Graphs

Calculus, 2ADV C3 2022 HSC 27

Let  `f(x)=xe^(-2x)`.

It is given that  `f^(′)(x)=e^(-2x)-2xe^(-2x)`.

  1. Show that  `f^(″)(x)=4(x-1)e^(-2x)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find any stationary points of  `f(x)`  and determine their nature.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Sketch the curve  `y=x e^{-2 x}`, showing any stationary points, points of inflection and intercepts with the axes.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Max S.P. at}\ \ (1/2, 1/(2e))`
  3.  
Show Worked Solution

a.   `f^(′)(x)=e^(-2x)-2xe^(-2x)`

`f^(″)(x)` `=-2e^(-2x)-[2x(-2)e^(-2x)+2e^(-2x)]`  
  `=-2e^(-2x)+4xe^(-2x)-2e^(-2x)`  
  `=4xe^(-2x)-4e^(-2x)`  
  `=4(x-1)e^(-2x)\ \ text{… as required}`  

 

b.   `text{S.P.’s occur when}\ \ f^(′)(x)=0`

`e^(-2x)-2xe^(-2x)` `=0`  
`e^(-2x)(1-2x)` `=0`  

 
`e^(-2x)=0\ \ =>\ \ text{No solution}`

`1-2x=0\ \ =>\ \ x=1/2`

`f^(″)(1/2)` `=4(1/2-1)e^(-2xx1/2)`  
  `=-2e^(-1)<0\ \ =>\ text{MAX}`  

 
`f(1/2)=1/2e^(-1)=1/(2e)`
 

c.   `text{POI occurs when}\ \ f^(″)(x)=0`

`f^(″)(x)=4(x-1)e^(-2x)=0\ \ =>\ \ x=1`

`text{Test for change in concavity:}`

`f^(″)(0)=4(0-1)e^0=-4`

`f^(″)(2)=4(2-1)e^(-4)>0\ \ =>\ text{Concavity changes}`

`:.\ text{POI exists at}\ \ (1,1/e^2)`

`text{As}\ \ x->oo\ \ =>\ \ y->0^+`
 


Mean mark part (c) 54%.

Filed Under: Curve Sketching (Y12), Graphs and Applications (Y11) Tagged With: Band 3, Band 4, smc-966-10-Exponential graphs, smc-969-30-Other Graphs

Calculus, 2ADV C3 2019 MET1 4

Given the function  `f(x) = log_e (x-3) + 2`,

  1. State the domain and range of `f(x)`.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. i.  Find the equation of the tangent to the graph of  `f(x)` at  `(4, 2)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

     

    ii. On the axes below, sketch the graph of the function  `f(x)`, labelling any asymptote with its equation.

     

        Also draw the tangent to the graph of  `f(x)`  at  `(4, 2)`.  (4 marks)
     

--- 0 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x >3`

     

    `y in R`

  2. i.  `y = x-2`

     

    ii. `text(See Worked Solutions)`

Show Worked Solution
a.   `text(Domain)` `: \ x > 3`
  `text(Range)` `: \ y in R`

 

b.i.   `g(x)` `= log_e (x-3) + 2`
  `g^{\prime}(x)` `= 1/(x-3)`
  `g^{\prime}(4)` `= 1`

 
`text(Equation of tangent),\ m = 1\ \ text(through)\ (4, 2):`

`y-2` `= 1(x-4)`
`y` `= x-2`

 

b.ii.  

Filed Under: Curve Sketching (Y12), Graphs and Applications (Y11) Tagged With: Band 3, Band 4, Band 5, smc-966-40-Log graphs, smc-969-30-Other Graphs

Calculus, 2ADV C3 2004 HSC 9c

Consider the function  `f(x) = (log_e x)/x`, for  `x > 0`.

  1. Show that the graph of  `y = f(x)`  has a stationary point at  `x = e`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. By considering the gradient on either side of  `x = e`, or otherwise, show that the stationary point is a maximum.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Use the fact that the maximum value of  `f(x)`  occurs at  `x = e`  to deduce that  `e^x ≥ x^e`  for all  `x > 0`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

i.     `f(x) = (log_e x)/x, text(for)\ x > 0`

`text(Using the quotient rule,)`

`f′(u/v)` `=(u′v-uv′)/v^2`
`f′(x)` `= (x · d/(dx) (log_e x) − log_e x · d/(dx) (x))/(x^2)`
  `= (x(1/x) − log_e x · 1)/(x^2)`
  `= (1 − log_e x)/(x^2)`

 

`text(SP’s occur when)\ \ f′(x)=0`

`(1 − log_e x)/(x^2)` `= 0`
`1 − log_e x` `= 0`
`log_e x` `= 1`
`:. x` `= e`

 

`:. text(There is a stationary point at)\ \ x = e.`

 

ii.   

Geometry and Calculus, 2UA 2004 HSC 9c Answer

`text(When)\ \ x < e, log_e x<1\ \ \ text{(from graph)}`

`1 − log_e x` `> 0`
`(1 − log_e x)/(x^2)` `> 0`
`:. f′(x)` `> 0`

 

`text(When)\ x > e, log_e x>1\ \ \ text{(from graph)}`

`1 − log_e x` `< 0`
`(1 − log_e x)/(x^2)` `< 0`
`:. f′(x)` `< 0`

 

`:.\ text(The stationary point at)\ \ x = e\ \ text(is a maximum.)`

 

iii.   `f(e)` `= (log_e x)/e`
    `= 1/e`

`:. f(x)\ \ text(has a maximum value at)\ \ (e,1/e)`

MARKER’S COMMENT: Very challenging for most students. Successful students recognised the link to part (ii).

 

`:. (log_e x)/x` `≤ 1/e`
`log_e x` `≤ x/e`
`e log_e x` `≤ x`
`log_e x^e` `≤ x`
`e^(log_e x^e)` `≤ e^x`
`x^e` `≤ e^x\ \ \ text{(using}\ e^(log x) = x)`
`:. e^x` `≥ x^e \ \ \ text{(for}\ \ x > 0text{)}`

Filed Under: Applied Calculus (L&E), Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 6, smc-969-30-Other Graphs

Calculus, 2ADV C3 2009 HSC 10

`text(Let)\ \ f(x) = x - (x^2)/2 + (x^3)/3`

  1. Show that the graph of  `y = f(x)`  has no turning points.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the point of inflection of  `y = f(x)`.     (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. i. Show that `1 - x + x^2 - 1/(1 + x) = (x^3)/(1 + x)`  for  `x != -1`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     

    ii. Let  `g(x) = ln (1 + x)`.

     

        Use the result in part c.i. to show that  `f prime (x) >= g prime (x)`  for all  `x >= 0`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  1. Sketch the graphs of  `y = f(x)`  and  `y = g(x)`  for  `x >= 0`.    (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Show that  `d/(dx) [(1 + x) ln (1 + x) - (1 + x)] = ln (1 + x)`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Find the area enclosed by the graphs of  `y = f(x)`  and  `y = g(x)`, and the straight line  `x = 1`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof  (See Worked Solutions)}`
  2. `(1/2, 5/12)`
  3. i. `text{Proof  (See Worked Solutions)}`

     

    ii. `text{Proof  (See Worked Solutions)}` 

  4.  
        Geometry and Calculus, 2UA 2009 HSC 10 Answer
  5. `text{Proof  (See Worked Solutions)}`
  6. `1 5/12\ – 2ln2\ \ text(u²)`
Show Worked Solution
a.    `f(x) = x\ – (x^2)/2 + (x^3)/3`
♦♦ Mean mark 28% for all of Q10 (note that data for each question part is not available).
 

`text(Turning points when)\ f prime (x) = 0`

`f prime (x) = 1\ – x + x^2`

`x^2\ – x + 1 = 0`

`text(S)text(ince)\ \ Delta` `= b^2\ – 4ac`
  `= (–1)^2\ – 4 xx 1 xx 1`
  `= -3 < 0 => text(No solution)`

 
`:.\ f(x)\ text(has no turning points)`

 

b.    `text(P.I. when)\ f″(x) = 0`
`f″(x)` `= -1 + 2x = 0`
`2x` `= 1`
`x` `= 1/2`

`text(Check for change in concavity)`

`f″(1/4)` `= -1/2 < 0`
`f″(3/4)` `= 1/2 > 0`

`=>\ text(Change in concavity)`

`:.\ text(P.I. at)\ \ x = 1/2`

 

`f(1/2)` `= 1/2\ – ((1/2)^2)/2 + ((1/2)^3)/3`
  `= 1/2\ – 1/8 + 1/24`
  `= 5/12`

`:.\ text(Point of Inflection at)\ (1/2, 5/12)`

 

c.i.    `text(Show)\ 1\ – x + x^2\ – 1/(1 + x) = (x^3)/(1 + x),\ \ \ x != -1` 
`text(LHS)` `= (1+x)/(1+x)\ – (x(1+x))/(1+x) + (x^2(1+x))/((1+x))\ – 1/(1+x)`
  `= (1 + x\ – x\ – x^2 + x^2 + x^3\ – 1)/(1+x)`
  `= (x^3)/(1+x)\ \ \ text(… as required)`

 

c.ii.   `text(Let)\ g(x) = ln(1+x)`
  `g prime (x) = 1/(1 + x)`
`f prime (x)\ – g prime (x)` `= 1\ – x + x^2\ – 1/(1+x)`
  `= (x^3)/(1 + x)\ \ text{(using part (i))}`

`text(S)text(ince)\ (x^3)/(1 + x) >= 0\ text(for)\ x >= 0`

`f prime (x)\ – g prime (x) >= 0`
`f prime (x) >= g prime (x)\ text(for)\ x >= 0`
MARKER’S COMMENT: When 2 graphs are drawn on the same set of axes, you must label them. 
 

d. 

Geometry and Calculus, 2UA 2009 HSC 10 Answer

e.    `text(Show)\ d/(dx) [(1 + x) ln (1 + x)\ – (1 + x)] = ln (1 + x)`
  `text(Using)\ d/(dx) uv=uv′+vu′`
`text(LHS)` `= (1+x) xx 1/(1 + x) + ln(1+x)xx1 +  – 1`
  `= 1+ ln(1+x)\ – 1`
  `= ln(1+x)`
  `=\ text(RHS    … as required)`

 

f.    `text(Area)` `= int_0^1 f(x)\ – g(x)\ dx`
    `= int_0^1 (x\ – (x^2)/2 + (x^3)/3\ – ln(x+1))\ dx`
    `= [x^2/2\ – x^3/6 + (x^4)/12\ – (1 + x) ln (1+x) + (1+x)]_0^1`
    `text{(using part (e) above)}`
    `= [(1/2 – 1/6 + 1/12 – (2)ln2 + 2) – (ln1 + 1)]`
    `= 5/12\ – 2ln2 + 2\ – 1`
    `= 1 5/12\ – 2 ln 2\ \ text(u²)`

Filed Under: Applied Calculus (L&E), Areas Under Curves, Areas Under Curves (Y12), Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, Band 6, smc-969-10-Cubic, smc-969-30-Other Graphs, smc-975-60-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in