SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, 2ADV T1 2017 HSC 13a

Using the cosine rule, find the value of `x` in the following diagram.  (3 marks)
 

Show Answers Only

`x = 11`

Show Worked Solution

`text(C)text(osine Rule:)`

`c^2` `= a^2 + b^2 – 2ab cos C`
`13^2` `= (x – 4)^2 + (x + 4)^2 – 2 (x – 4) (x + 4) cos 60^@`
`169` `= x^2 – 8x + 16 + x^2 + 8x + 16 – (x^2 – 16)`
`169` `= x^2 + 48`
`x^2` `= 121`
`:. x` `= 11, qquad (x != –11)`

Filed Under: Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, smc-6392-40-Cosine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2016 HSC 12c

Square tiles of side length 20 cm are being used to tile a bathroom.

The tiler needs to drill a hole in one of the tiles at a point `P` which is 8 cm from one corner and 15 cm from an adjacent corner.

To locate the point `P` the tiler needs to know the size of the angle `theta` shown in the diagram.
 

 hsc-2016-12c

 
Find the size of the angle `theta` to the nearest degree.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`69°\ text{(nearest degree)}`

Show Worked Solution

`α + theta = 90`

`text(Using the cosine rule,)`

`cos alpha` `= (20^2 + 15^2 – 8^2)/(2 xx 20 xx 15)`
  `= 0.935`
`alpha` `= 20.7…°`

 

`:. theta` `= 90 – 20.7…`
  `= 69.22…`
  `= 69°\ text{(nearest degree)}`

Filed Under: Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 3, smc-6392-40-Cosine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2015 HSC 13a

The diagram shows `Delta ABC` with sides  `AB = 6` cm, `BC = 4` cm  and  `AC = 8` cm.
 

  1. Show that  `cos A = 7/8`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. By finding the exact value of `sin A`, determine the exact value of the area of  `Delta ABC`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `3 sqrt 15\ \ text(cm²)`
Show Worked Solution

i.  `text(Show)\ cos A = 7/8`

`text(Using the cosine rule)`

`cos A` `= (b^2 + c^2-a^2)/(2bc)`
  `= (8^2 + 6^2-4^2)/(2 xx 8 xx 6)`
  `= (64 + 36-16)/96`
  `= 84/96`
  `= 7/8\ \ text(…  as required)`

 

♦ Mean mark 40%.
ii.    2UA HSC 2015 13ai
`a^2 + 7^2` `= 8^2`
`a^2 + 49` `= 64`
`a^2` `= 15`
`a` `= sqrt 15`
`:.\ sin A` `= (sqrt 15)/8`

 

`:.\ text(Area)\ Delta ABC` `= 1/2 bc\ sin A`
  `= 1/2 xx 8 xx 6 xx (sqrt 15)/8`
  `= 3 sqrt 15\ \ text(cm²)`

Filed Under: Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 3, Band 5, smc-6392-30-Sine Rule, smc-6392-40-Cosine Rule, smc-980-30-Sine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2006 HSC 4a

In the diagram, `ABCD` represents a garden. The sector  `BCD`  has centre `B` and  `/_DBC = (5 pi)/6`

The points `A, B` and `C` lie on a straight line and  `AB = AD = 3` metres.

Copy or trace the diagram into your writing booklet.

  1. Show that  `/_DAB = (2 pi)/3.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the length of  `BD`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the area of the garden  `ABCD`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `3 sqrt 3\ \ text(m)`
  3. `(9 sqrt 3 + 45 pi) / 4\ \ text(m²)`
Show Worked Solution
i.   

`text(Show)\ /_DAB = (2 pi)/3`

`/_DBA` `= pi – (5 pi)/6\ \ \ text{(π radians in straight angle}\ ABC text{)}`
  `= pi/6\ text(radians)`

 
`:. /_BDA = pi/6\ text(radians)\ \ \ text{(base angles of isosceles}\ Delta ADB text{)}`

`:. /_DAB` `= pi – (pi/6 + pi/6)\ \ \ text{(angle sum of}\ Delta ADB text{)}`
  `= (2 pi)/3\  text(radians … as required)`

 

ii.  `text(Using the cosine rule:)`

`BD^2` `= AD^2 + AB^2 – 2 xx AD xx AB xx cos {:(2 pi)/3`
  `= 9 + 9 – (2 xx 3 xx 3 xx -0.5)`
  `= 27`
`:. BD` `= sqrt 27`
  `= 3 sqrt 3\ \ text(m)`

 

iii.  `text(Area of)\ Delta ADB` `= 1/2 ab sin C`
  `= 1/2 xx 3 xx 3 xx sin{:(2 pi)/3`
  `= 9/2 xx sqrt3/2`
  `= (9 sqrt 3)/4\ \ text(m²)`

 
`text(Area of sector)\ BCD`

`= {(5 pi)/6}/(2 pi) xx pi r^2`

`= (5 pi)/12 xx (3 sqrt 3)^2`

`= (45 pi)/4\ \ text(m²)`

 

`:.\ text(Area of garden)\ ABCD`

`= (9 sqrt 3)/4 + (45 pi)/4`

`= (9 sqrt 3 + 45 pi)/4\ \ text(m²)`

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11), Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 3, Band 4, smc-6392-30-Sine Rule, smc-6392-40-Cosine Rule, smc-6394-30-Area - Other, smc-978-30-Area - Other, smc-980-30-Sine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2005 HSC 3b

The lengths of the sides of a triangle are 7 cm, 8 cm and 13 cm.

  1. Find the size of the angle opposite the longest side.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the area of the triangle.  (1 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `120^@`
  2. `14sqrt3\ text(cm)`
Show Worked Solution

i.

 Trig Ratios, 2UA 2005 HSC 3b Answer1 

`∠ABC\ \ text(is opposite the longest side)`

`text(Using the cosine rule)`

`cos\ ∠ABC` `= (7^2 + 8^2 −13^2)/(2 xx 7 xx 8)`
  `= text(−)1/2`

 
`text(S)text(ince cos)\ 60^@ = 1/2\ text(and cos is negative)`

`text(in 2nd quadrant,)`

`∠ABC` `= 180− 60`
  `= 120^@`

 

ii.  `text(Using the sine rule)`

`text(Area)\ ΔABC` `= 1/2\ ab\ sin\ C`
  `= 1/2 xx 7 xx 8\ sin 120^@`
  `= 28 xx sqrt3/2`
  `= 14sqrt3\ text(cm)^2`

Filed Under: Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, smc-6392-30-Sine Rule, smc-6392-40-Cosine Rule, smc-980-30-Sine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2011 HSC 8a

In the diagram, the shop at  `S`  is 20 kilometres across the bay from the post office at  `P`. The distance from the shop to the lighthouse at  `L`  is 22 kilometres and  `/_ SPL`  is 60°.

Let the distance  `PL`  be  `x`  kilometres.
 

2011 8a
 

  1. Use the cosine rule to show that  `x^2-20x- 84 = 0`.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence, find the distance from the post office to the lighthouse. Give your answer correct to the nearest kilometre.    (2 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `24\ text(km)`
Show Worked Solution

i.  `text(Using the cosine rule)`

`cos 60^@` `= (x^2 + SP^2 – SL^2)/( 2 xx x xx 20)`
`1/2` `= (x^2 + 20^2 – 22^2)/(40x)`
`20x` `= x^2 – 84`

  
`:. x^2 – 20x – 84= 0\ \ \ text(… as required)`

 

ii.  `text(Find)\ \ LP:`

`x^2 – 20x – 84 = 0`

`x` `= (-b +- sqrt(b^2 – 4ac))/(2a)`
  `= (20 +- sqrt(20^2 – 4 xx 1 xx (–84)))/2`
  `= (20 +- sqrt(736))/2`
  `= 23.546…\ \ \ \ (x>0)`
  `= 24\ text(km)\ \ text{(nearest km)}`

Filed Under: Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, smc-6392-40-Cosine Rule, smc-980-40-Cosine Rule

Trigonometry, 2ADV T1 2012 HSC 13a

The diagram shows a triangle  `ABC`. The line  `2x + y = 8`  meets the `x` and `y` axes at the points `A` and `B` respectively. The point `C` has coordinates  `(7, 4)`. 
 

2012 13a
 

  1. Calculate the distance  ` AB `.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. It is known that  `AC = 5`  and  `BC = sqrt 65 \ \ \ `(Do NOT prove this)  

     

    Calculate the size of  `angle ABC` to the nearest degree.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The point `N` lies on  `AB`  such that  `CN`  is perpendicular to  `AB`. 

     

    Find the coordinates of `N`.    (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4 sqrt 5  \ text(units)`
  2. ` 34°  \ text{(nearest degree)}`
  3. `N (3,2)`
Show Worked Solution

i.   `text(Find distance) \  AB:`

`text(Find A),\ \ y=0`

`2x + 0` `= 8`
`x` `= 4 \ => A (4,0)`

 
`text(Find B),\ \ x=0`

` 0 + y = 8  \ => B(0,8)`
  

`text(Using Pythagoras:)`

`AB^2` `= OB^2 + OA^2`
  `= 8^2 + 4^2`
  `= 80`
`:. \ AB` `= sqrt 80`
  ` = 4 sqrt 5  \ text(units)`

 

ii.   `text(Find)\  angle ABC:`

`text(Using cosine rule)`

`cos angle ABC` `=  (AB^2 + BC^2 – AC^2)/(2 xx AB xx BC)`
  `= ((4 sqrt 5)^2 + (sqrt 65)^2 – 5^2)/(2 xx 4 sqrt 5 xx sqrt 65)` 
  `= (80 + 65 – 25) / (8 xx sqrt 325)`
  `= 120/(40 sqrt 13)`
  `= 3/ sqrt 13`
  `= 0.83205…`
`:. angle ABC` `= 33.690…`
  `= 34°\ \  text{(nearest degree)}`

 

iii.  `text(Find) \ N:`

`AB   text(is)  \ 2x +y = 8`

`=>  \ text(Gradient)  \ AB = -2`

`:.\ text(Gradient of) \  CN = ½ \ \ \ (m_1 m_2 = -1\ \ text(for ⊥ lines))`

 

`text(Equation of) \ CN, \ m = ½\ text(through)\ (7,4)`

MARKER’S COMMENT: Many students could not find the correct equation on `CN` because they took its gradient to be the reciprocal of `AB` and not the negative reciprocal. 
`y  – 4` `= ½ (x  – 7)`
`2y  – 8` `= x  – 7`
`x  – 2y + 1` `= 0`

 

` N \ text(is intersection of) \ AB \  text(and) \ CN`

`2x + y  – 8` `= 0\ \ …\ (1)`
`x  – 2y + 1` `= 0\ \ …\ (2)`

 
`text(Multiply)  \ (1) xx 2`

`4x +2y  – 16 = 0\ \ …\ (3)`

 
`text(Add) \  (2) + (3)`

`5x  – 15` `= 0`
`x` `=3`

 
`text(Substitute)\ \ x = 3\ \ text(into)\ \ (1)`

`2(3) + y  – 8 = 0   =>  y = 2`

`:. N (3,2)`

Filed Under: 6. Linear Functions, Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 3, Band 4, smc-6392-10-Pythagoras, smc-6392-40-Cosine Rule, smc-980-10-Pythagoras, smc-980-40-Cosine Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in