Let `g(x) = log_2(x),\ \ x > 0`
Which one of the following equations is true for all positive real values of `x?`
A. `2g (8x) = g (x^2) + 8`
B. `2g (8x) = g (x^2) + 6`
C. `2g (8x) = (g (x) + 8)^2`
D. `2g (8x) = g (2x) + 6`
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `g(x) = log_2(x),\ \ x > 0`
Which one of the following equations is true for all positive real values of `x?`
A. `2g (8x) = g (x^2) + 8`
B. `2g (8x) = g (x^2) + 6`
C. `2g (8x) = (g (x) + 8)^2`
D. `2g (8x) = g (2x) + 6`
`B`
`text(Consider Option)\ B:`
`text(LHS)` | `= 2g(8x)` |
`= 2log_2(8x)` | |
`= 2log_2(8) + 2log_2(x)` | |
`=2log_2 (2^3)+ 2log_2(x)` | |
`= 6 + log_2(x^2)` | |
`= g(x^2) + 6` |
`=> B`
If `f(x) = 1/2e^(3x) and g(x) = log_e(2x) + 3` then `g (f(x))` is equal to
A. `3(x + 1)`
B. `e^(3x) + 3`
C. `e^(8x + 9)`
D. `log_e (3x) + 3`
`A`
`g(f(x))` | `= log_e(2 xx 1/2e^(3x)) + 3` |
`=log_e e^(3x) + 3` | |
`=3x + 3` | |
`= 3 (x + 1)` |
`=> A`
Let `f(x) = log_e(x)` for `x>0,` and `g (x) = x^2 + 1` for all `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`text(Range)\ h(x):\ \ h>=0`
i. | `h(x)` | `= f(x^2 + 1)` |
`= log_e(x^2 + 1)` |
ii. `text(Domain)\ (h) =\ text(Domain)\ (g):\ text(all)\ x`
`=> x^2 + 1 >= 1` |
`=> log_e(x^2 + 1) >= 0` |
`:.\ text(Range)\ h(x):\ \ h>=0`
iii. | `text(LHS)` | `= h(x) + h(−x)` |
`= log_e(x^2 _ 1) + log_e((−x)^2 + 1)` | ||
`= log_e(x^2 + 1) + log_e(x^2 + 1)` | ||
`= 2log_e(x^2 + 1)` |
`text(RHS)` | `= f((x^2 + 1)^2)` |
`= 2log_e(x^2 + 1)` |
`:. h(x) + h(−x) = f((g(x))^2)\ \ text(… as required)`
Let `f(x) = e^x + e^(–x).`
`f(2u)` is equal to
A. `f(u) + f(-u)`
B. `2 f(u)`
C. `(f(u))^2 - 2`
D. `(f(u))^2 + 2`
`C`
`text(By trial and error,)`
`text(Consider)\ \ (f(u))^2 – 2:`
`f(2u)` | `=e^(2u) + e^(-2u)` |
`(f(u))^2` | `=(e^u + e^(-u))^2` |
`=e^(2u) + 2 + e^(-2u)` | |
`:. f(2u) = (f(u))^2-2`
`=>C`
Let `g(x) = x^2 + 2x - 3` and `f(x) = e^(2x + 3).`
Then `f(g(x))` is given by
A. `e^(4x + 6) + 2 e^(2x + 3) - 3`
B. `2x^2 + 4x - 6`
C. `e^(2x^2 + 4x - 3)`
D. `e^(2x^2 + 4x - 6)`
`C`
`text(By trial and error,)`
`text(Consider:)\ \ f(x) = e^(2x^2 + 4x – 3)`
`f(g(x))` | `=e^(2 (x^2 + 2x – 3)+3)` |
`= e^(2x^2 + 4x – 3)` |
`=> C`