Given that \(f(x)=x^2+1\) and \(g(x)=x+2\), determine \(f(g(x))\) and its range. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Given that \(f(x)=x^2+1\) and \(g(x)=x+2\), determine \(f(g(x))\) and its range. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(f(g(x))=(x+2)^2+1\)
\(\ \text{Range} \ f(g(x)): \ y \geqslant 1\)
\(f(x)=x^2+1, \quad g(x)=x+2\)
\(f(g(x))=(x+2)^2+1\)
\(\Rightarrow f(g(x)) \ \text{is a concave up parabola, vertex}\ (-2,1)\)
\(\therefore \ \text{Range} \ f(g(x)): \ y \geqslant 1\)
`B`
`text{By Elimination:}`
`y=f(x)\ \ text{is an even function}`
`y=f(x)=f(-x)\ \ =>\ \ g(f(x))=g(f(-x))`
`g(f(x))\ \ text{is also an even function}`
`text{→ Eliminate A, C and D}`
`=>B`
Given the function `f(x) = sqrt(3-x)` and `g(x) = x^2-2`, sketch `y = g(f(x))` over its natural domain. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Let `f(x) = -x^2 + x + 4` and `g(x) = x^2 - 2`.
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| a. `f(3)` | `= -3^2 + 3 + 4` |
| `= -2` |
| `g(f(3))` | `= g(-2)` |
| `= (-2)^2 – 2` | |
| `= 2` |
| b. `f(g(x))` | `= -(x^2 – 2)^2 + (x^2 – 2) + 4` |
| `= -(x^4 – 4x^2 + 4) + x^2 + 2` | |
| `= -x^4 + 5x^2 – 2` |
Find the domain and range of `f(g(x))` given
`f(x) = 2x^2 - 8x` and `g(x) = x + 2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text(Domain: all)\ x`
`text(Range:)\ −8<=y< ∞`
| `f(g(x))` | `= 2(x + 2)^2 – 8(x + 2)` |
| `= 2(x^2 + 4x + 4) – 8x – 16` | |
| `= 2x^2 + 8x + 8 – 8x – 16` | |
| `= 2(x^2 – 4)` |
`:. text(Domain: all)\ x`
`:. text(Range:)\ −8<=y< ∞`
Given `f(x) = sqrtx` and `g(x) = 25 - x^2`
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
`text(Range:)\ 0<=y<= 5`
| i. | `g(f(x))` | `= 25 – (f(x))^2` |
| `= 25 – (sqrtx)^2` | ||
| `= 25 – x` |
| ii. | `f(g(x))` | `= sqrt(g(x))` |
| `= sqrt(25 – x^2)` |
`:.\ text(Domain:)\ −5<= x <= 5`
`:.\ text(Range:)\ 0<=y<= 5`
If `f(x - 1) = x^2 - 2x + 3`, then `f(x)` is equal to
A. `x^2 - 2`
B. `x^2 + 2`
C. `x^2 - 2x + 4`
D. `x^2 - 4x + 6`
`B`
`text(Let)\ \ g(x) = f(x – 1)`
`g(x+1) = f(x)`
| `g(x + 1)` | `= (x + 1)^2 – 2(x + 1) + 3` |
| `=x^2+2x+1-2x-2+3` | |
| `= x^2 + 2` |
`=> B`
Let `f(x) = x^2 + 1 and g(x) = 2x + 1.` Write down the rule of `f(g(x)).` (1 mark)
`(2x + 1)^2 + 1`
| `f (g(x))` | `=f(2x+1)` |
| `= (2x + 1)^2 + 1` |
Let `f (x) = x^2`
Which one of the following is not true?
A. `f(xy) = f (x) f (y)`
B. `f(x) - f(-x) = 0`
C. `f (2x) = 4 f (x)`
D. `f (x - y) = f(x) - f(y)`
`D`
`text(By trial and error,)`
`text(Consider option)\ D:`
| `f(x-y)` | `=(x-y)^2` |
| `=x^2 -2xy+y^2` | |
| `f(x)-f(y)` | `= x^2-y^2` |
| `:.f(x-y)` | `!=f(x)-f(y)` |
`=>D`
Let `f(x) = log_e(x)` for `x>0,` and `g (x) = x^2 + 1` for all `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`text(Range)\ h(x):\ \ h>=0`
| i. | `h(x)` | `= f(x^2 + 1)` |
| `= log_e(x^2 + 1)` |
ii. `text(Domain)\ (h) =\ text(Domain)\ (g):\ text(all)\ x`
| `=> x^2 + 1 >= 1` |
| `=> log_e(x^2 + 1) >= 0` |
`:.\ text(Range)\ h(x):\ \ h>=0`
| iii. | `text(LHS)` | `= h(x) + h(−x)` |
| `= log_e(x^2 _ 1) + log_e((−x)^2 + 1)` | ||
| `= log_e(x^2 + 1) + log_e(x^2 + 1)` | ||
| `= 2log_e(x^2 + 1)` |
| `text(RHS)` | `= f((x^2 + 1)^2)` |
| `= 2log_e(x^2 + 1)` |
`:. h(x) + h(−x) = f((g(x))^2)\ \ text(… as required)`
Let `g(x) = x^2 + 2x - 3` and `f(x) = e^(2x + 3).`
Then `f(g(x))` is given by
A. `e^(4x + 6) + 2 e^(2x + 3) - 3`
B. `2x^2 + 4x - 6`
C. `e^(2x^2 + 4x - 3)`
D. `e^(2x^2 + 4x - 6)`
`C`
`text(By trial and error,)`
`text(Consider:)\ \ f(x) = e^(2x^2 + 4x – 3)`
| `f(g(x))` | `=e^(2 (x^2 + 2x – 3)+3)` |
| `= e^(2x^2 + 4x – 3)` |
`=> C`