A discrete random variable has probability distribution as shown in the table where `n` is a finite positive integer.
\begin{array} {|c|c|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \ \ \ r\ \ \ & \ \ \ r^{2}\ \ \ & \ \ \ r^{3}\ \ \ & \ \ \ ...\ \ \ & \ \ \ r^{k}\ \ \ &\ \ \ ...\ \ \ & \ \ \ r^{n}\ \ \ \\
\hline
\rule{0pt}{2.5ex} P(X=x) \rule[-1ex]{0pt}{0pt} & r^{n} & r^{n-1} & r^{n-2} & ... & r^{n-k+1} & ... & r \\
\hline
\end{array}
Show that `E(X) = n( 2r-1)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---