SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Statistics, 2ADV S3 2023 HSC 29

A continuous random variable \(X\) has probability density function \(f(x)\) given by
 

\(f(x)=\left\{\begin{array}{cl} 12 x^2(1-x), & \text { for } 0 \leq x \leq 1 \\ 0, & \text { for all other values of } x \end{array}\right.\)

 

  1. Find the mode of \(X\).  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the cumulative distribution function for the given probability density function.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Without calculating the median, show that the mode is greater than the median.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(x=\dfrac{2}{3} \)

b.   \(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

c.    \(\text{See Worked Solutions}\)

Show Worked Solution

a.    \(\text{Mode}\ \rightarrow \ f(x)_\text{max} \)

\(f(x)=12 x^2(1-x)=12x^2-12x^3 \)

\(f^{′}(x)=24x-36x^2=12x(2-3x) \)

\(f^{″}(x)=24-72x \)

♦ Mean mark (a) 45%.

\(\text{Max/min when}\ f^{′}(x)=0 \)

\(2-3x=0\ \ ⇒\ \ x=\dfrac{2}{3} \ \ (x \neq 0) \)

\(\text{At}\ x=\dfrac{2}{3}, \ f^{″}(x)=24-72(\dfrac{2}{3})=-24<0 \)

\(\therefore \ \text{Mode (max) at}\ x=\dfrac{2}{3} \)
  

b.     \(F(x)\) \(= \int 12x^2-12x^3\ dx\)
    \(=4x^3-3x^4+c \)

 
\(\text{At}\ x=0, F(x)=0\ \ ⇒\ \ c=0 \)

\(F(x)=4x^3-3x^4 \)
 

\(F(x)=\left\{\begin{array}{cl} 0, & \text { for } x \lt 0 & \\ 4x^3-3x^4, & \text { for } 0 \leq x \leq 1 \\ 1, & \text { for } x > 1 \end{array}\right.\)

 
c.
    \(\text{Find}\ F\Big{(}\dfrac{2}{3}\Big{)}: \)

\(F\Big{(}\dfrac{2}{3}\Big{)} \) \(=4 \times \Big{(}\dfrac{2}{3}\Big{)}^3-3 \times \Big{(}\dfrac{2}{3}\Big{)}^4 \)  
  \(=\dfrac{16}{27}>0.5 \)  

 
\(\therefore\ \text{Mode > median}\)

♦♦♦ Mean mark (c) 17%.

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, Band 6, smc-994-10-Median, smc-994-20-Mode, smc-994-40-Cumulative Distribution Fn, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 EQ-Bank 1

A probability density function can be used to model the lifespan of a termite, `X`, in weeks, is given by
 

`f(x) = {(k(36 - x^2)),(0):}\ \ \ {:(3 <= x <= 6),(text(otherwise)):}`
 

  1. Show that the value of  `k`  is  `1/45`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the cumulative distribution function.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the probability that a termite's lifespan is greater than 5 weeks.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `F(x) = {(0),(1/135 (108t – t^3  – 297)),(1):}\ \ \ {:(x < 3),(3 <= x <= 6),(x > 6):}`
  3. `17/135`
Show Worked Solution
i.    `k int_3^6 36 – x^2\ dx` `= 1`
  `k[36x – (x^3)/3]_3^6` `= 1`
  `k[(216 – 72)-(108 – 9)]` `= 1`
  `45k` `= 1`
  `k` `= 1/45`

 

ii.    `F(t)` `= int_(-∞)^t f(x)\ dx`
    `= int_3^t f(x)\ dx`
    `= 1/45 int_3^t 36 – x^2\ dx`
    `= 1/45 [36x – (x^3)/3]_3^t`
    `= 1/135[108x – x^3]_3^t`
    `= 1/35[(108t – t^3) – (324 – 27)]`
    `= 1/135(108t – t^3 – 297)`

 
`:. F(x) = {(0),(1/135 (108t – t^3  – 297)),(1):}\ \ \ {:(x < 3),(3 <= x <= 6),(x > 6):}`

 

iii.    `P(X > 5)` `= 1 – F(5)`
    `= 1 – 1/135(108 xx 5 – 5^3 – 297)`
    `= 1 – 118/135`
    `= 17/135`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, Band 5, smc-994-30-Other Probability, smc-994-40-Cumulative Distribution Fn, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 SM-Bank 18

The Lorenz birdwing is the largest butterfly in a habitat.

The probability density function that describes its life span, \(X\), in weeks, is given by
 

\(f(x)= \begin{cases}
\dfrac{4}{625}\left(5 x^3-x^4\right) & 0 \leq x \leq 5 \\
\\
0 & \text {elsewhere }\end{cases}\)
 

In a sample of 80 Lorenz birdwing butterflies, how many butterflies are expected to live longer than two weeks, correct to the nearest integer?  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(73\)

Show Worked Solution

\(\begin{aligned} \operatorname{Pr}(X>2) & =\dfrac{4}{625} \int_2^5 5 x^3-x^4 \, dx \\
& =\dfrac{4}{625}\left[\dfrac{5}{4} x^4-\dfrac{x^5}{5}\right]_2^5 \\
& =\dfrac{4}{625}\left[\left(\dfrac{5^5}{4}-\dfrac{5^5}{5}\right)-\left(\dfrac{5}{4} \times 2^4-\dfrac{2^5}{5}\right)\right] \\
& =\dfrac{4}{625}\left[\dfrac{625}{4}-\dfrac{68}{5}\right] \\
& =0.9129 \ldots\end{aligned}\)

 

\(\begin{aligned} \therefore \text { Expected number } & =80 \times 0.9129 \ldots \\ & \approx 73.03 \\ & \approx 73\end{aligned}\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-30-Other Probability, smc-994-60-Polynomial PDF

Statistics, 2ADV S2 SM-Bank 14

A probability density function  `f(x)`  is given by
 

`f(x) = {(px(3 - x), \ text(if)\ \ 0 <= x <= 3),(0, \ text(if)\ \ x < 0\ \ text(or if)\ \ x > 3):}`
 

where  `p`  is a positive constant.

  1. Find the value of  `p`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the mode of  `f(x)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2/9`
  2. `3/2`
Show Worked Solution

i.   `text(Total Area under curve = 1)`

`p int_0^3 3x-x^2\ dx` `= 1`
`p[3/2 x^2-(x^3)/3]_0^3` `= 1`
`p[27/2-27/3-0]` `= 1`
`(9p)/2` `= 1`
`p` `= 2/9`

 

ii.   `f(x) = 2/9(3x-x^2)`

`f^{′}(x) = 2/9(3-2x)`

`text(S.P. when)\ \ f^{′}(x) = 0:`

`3-2x` `= 0`
`x` `= 3/2`

 
`f^{″}(x) = -4/9 < 0 \ =>\ text(MAX)`

`:.\ text(Mode) = 3/2`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 3, Band 4, smc-994-20-Mode, smc-994-60-Polynomial PDF

Statistics, 2ADV S2 SM-Bank 15

A function  \(f(x)\)  is given by

 \(f(x)= \begin{cases}
\dfrac{3}{4}(x-2)(4-x) & \text {if } 2 \leq x \leq 4 \\
\ \\
0 & \text{if } x<2 \text { or if } x>4
\end{cases}\)

  1. Show this curve is a probability density function.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the mode.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(\text{See Worked Solutions}\)
  2. \(3\)
Show Worked Solution
i.    \(f(x)\) \( =\dfrac{3}{4}(x-2)(4-x)\)
  \(\displaystyle \int_2^4 f(x) \) \( =\dfrac{3}{4} \displaystyle\int_2^4-x^2+6 x-8 d x\)
    \( =\dfrac{3}{4}\left[\dfrac{-x^3}{3}+3 x^2-8 x\right]_2^4\)
    \( =\dfrac{3}{4}\left[\left(-\dfrac{64}{3}+48-32\right)-\left(-\dfrac{8}{3}+12-16\right)\right] \)
    \( =\dfrac{3}{4}\left(-\dfrac{16}{3}+\dfrac{20}{3}\right) \)
    \(= 1\)

 

\(f(2)=0, f(4)=0\)

\(f(x)>0 \text { for } 2<x<4\)

\(f(2) \geq 0 \text { for } 2 \leq x \leq 4\)

 
\(\therefore f(x) \ \text{is a probability density function.}\)
 

ii.    \(f(x\) \(=\dfrac{3}{4}\left(-x^2+6 x-8\right)\)
  \(f^{\prime}(x)\) \(=\dfrac{3}{4}(-2 x+6)\)
  \(f^{\prime\prime}(x)\)  \(=-\dfrac{3}{2}\)

 
\(\text{SP when}\ f'(x) = 0\)

\(\begin{array}{r}-2 x+6=0 \\
x=3\end{array}\)

\(f^{\prime \prime}(x)<0 \Rightarrow \text {MAX}\)

\(\therefore \text {Mode}=3\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-20-Mode, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 SM-Bank 8

The continuous random variable `X` has a distribution with probability density function given by
 

`f(x) = {(ax(5 - x), \ text(if)\ \ 0 <= x <= 5), (0,\ text (if)\ \ x < 0\ \ text(or if)\ \ x > 5):}`
 

where `a` is a positive constant.

  1. Find the value of  `a`.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Express  `P(X < 3)`  as a  definite integral. (Do not evaluate the definite integral.)  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `6/125`
  2. `int_0^3 ax(5 – x)\ dx`
Show Worked Solution
a.   `text(Total Area under curve)` `= 1`
  `a int_0^5 (5x – x^2)\ dx` `= 1`
  `a [5/2 x^2 – 1/3 x^3]_0^5` `= 1`
  `a [(125/2 – 125/3) – (0)]` `= 1`
  `125/6 a` `= 1`
  `:. a` `= 6/125`

 

b.   `P(X < 3) = int_0^3 ax(5 – x)\ dx`

Filed Under: Probability Density Functions (Y12) Tagged With: Band 4, smc-994-30-Other Probability, smc-994-60-Polynomial PDF

Statistics, 2ADV S3 SM-Bank 7 MC

A probability density function  \(f(x)\)  is given by

\(f(x)= \begin{cases}
\dfrac{1}{12}\left(8 x-x^3\right) & 0 \leq x \leq 2 \\
\ \\
0 & \text{elsewhere }
\end{cases}\)

The median  \(m\)  of this function satisfies the equation

  1. \(-m^4+16 m^2-6=0\)
  2. \(m^4-16 m^2=0\)
  3. \(m^4-16 m^2+24=0.5\)
  4. \(m^4-16 m^2+24=0\)
Show Answers Only

\(D\)

Show Worked Solution

\(\begin{aligned} \int_0^m \dfrac{1}{12}\left(8 x-x^3\right) d x & =0.5 \\
{\left[\dfrac{1}{12}\left(4 x^2-\dfrac{x^4}{4}\right)\right]_0^m } & =0.5 \\
4 m^2-\dfrac{m^4}{4} & =6 \\
16 m^2-m^4 & =24 \\ m^4-16 m^2+24 & =0
\end{aligned}\)

\(\Rightarrow D\)

Filed Under: Probability Density Functions (Y12) Tagged With: Band 5, smc-994-10-Median, smc-994-60-Polynomial PDF

Copyright © 2014–2025 SmarterEd.com.au · Log in