Find the term independent of \(x\) in the expansion of \(\left(2 x^3+\dfrac{1}{x^4}\right)^7\). (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the term independent of \(x\) in the expansion of \(\left(2 x^3+\dfrac{1}{x^4}\right)^7\). (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(560\)
\(T_k=\ \text {General term of} \ \ \left(2 x^3+\dfrac{1}{x^4}\right)^7\)
| \(T_k\) | \(=\displaystyle \binom{7}{k}\left(2 x^3\right)^{7-k} \cdot\left(x^{-4}\right)^k\) |
| \(=\displaystyle\binom{7}{k} \cdot 2^{7-k} \cdot x^{3(7-k)} \cdot x^{-4 k}\) | |
| \(=\displaystyle\binom{7}{k} \cdot 2^{7-k} \cdot x^{21-7 k}\) |
\(\text{Independent term occurs when:}\)
\(x^{21-7 k}=x^0 \ \Rightarrow \ k=3\)
\(\therefore \text{Independent term}=\displaystyle \binom{7}{3} \cdot 2^4=560\)
--- 5 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
\(\left(\sqrt{5}-2 \right)^5=x+y \sqrt{5}\) Find the values of \(x\) and \(y\) using binomial expansion. (2 marks) --- 5 WORK AREA LINES (style=lined) --- \(x=-682, y=305\)
\( \left(\sqrt{5}-2\right)^5\)
\(={ }^5 C_0 \cdot\left(\sqrt{5}\right)^5+{ }^5 C_1\left(\sqrt{5}\right)^4 \cdot(-2)+{ }^5 C_2\left(\sqrt{5}\right)^3 \cdot(-2)^2\)
\(+{ }^5 C_3\left(\sqrt{5}\right)^2 \cdot(-2)^3 +{ }^5 C_4\left(\sqrt{5}\right) \cdot(-2)^4+{ }^5 C_5(-2)^5 \)
\( = 25 \sqrt{5}-250+200 \sqrt{5}-400+80 \sqrt{5}-32\)
\(= 305 \sqrt{5}-682 \)
\(\therefore x=-682, y=305\)
It is known that \({ }^n C_r={ }^{n-1} C_{r-1}+{ }^{n-1} C_r\) for all integers such that \(1 \leq r \leq n-1\). (Do NOT prove this.) Find ONE possible set of values for \(p\) and \(q\) such that \({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}={ }^p C_q\) (2 marks) --- 6 WORK AREA LINES (style=lined) ---
\(p=2024, q=81 \)
\({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}={ }^p C_q\) \(\text{Using the known relationship:} \) \({ }^{2022} C_{80}+{ }^{2022} C_{81} = { }^{2023} C_{81}\ \ …\ (1)\) \(\text{Also, since}\ \ { }^n C_r={ }^n C_{n-r} \) \({ }^{2023} C_{1943} = { }^{2023} C_{2023-1943} = { }^{2023} C_{80}\ \ …\ (2)\)
\({ }^{2022} C_{80}+{ }^{2022} C_{81}+{ }^{2023} C_{1943}\)
\(={ }^{2023} C_{81}+{ }^{2023} C_{1943}\ \ \text{(see (1) above)}\)
\(={ }^{2023} C_{81}+{ }^{2023} C_{80}\ \ \text{(see (2) above)} \)
\(={ }^{2024} C_{81} \)
\(\therefore p=2024, q=81 \)
Find the coefficients of `x^(2)` and `x^(3)` in the expansion of `(1-(x)/(2))^(8)`. (2 marks)
`x^2: 7, \ x^3:-7`
`text{General Term:}\ (1-(x)/(2))^(8) `
| `T_k` | `=((8),(k))(1)^(8-k)(- x/2)^k` | |
| `=((8),(k))(- 1/2)^k x^k` |
`text{Coefficient of}\ \ x^2 = ((8),(2))(- 1/2)^2=7`
`text{Coefficient of}\ \ x^3 = ((8),(3))(- 1/2)^3=-7`
Expand and simplify `(2a - b)^4`. (2 marks)
`16a^4 – 32a^3b + 24a^2b^2 – 8ab^3 + b^4`
`(2a – b)^4`
`= (2a)^4 + \ ^4C_1(2a)^3(-b) + \ ^4C_2(2a)^2(-b)^2 + \ ^4C_3(2a)(-b)^3 + (-b)^4`
`= 16a^4 – 4 · 8a^3b + 6 · 4a^2b^2 – 4 · 2ab^3 + b^4`
`= 16a^4 – 32a^3b + 24a^2b^2 – 8ab^3 + b^4`
to show that
`((2n),(n)) = ((n),(0))^2 + ((n),(1))^2 + … + ((n),(n))^2`,
where `n` is a positive integer. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
A group consisting of an even number `(0, 2, 4, …, 2n)` of members is chosen, with the number of men equal to the number of women.
Show, giving reasons, that the number of ways to do this is `((2n),(n))`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Show, giving reasons, that the number of ways to choose the even number of people and then the leaders is
`1^2 ((n),(1))^2 + 2^2((n),(2))^2 + … + n^2((n),(n))^2`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
By considering this reversed process and using part (ii), find a simple expression for the sum in part (iii). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Expand)\ \ (1 + x)^(2n):`
`\ ^(2n)C_0 + \ ^(2n)C_1 x^2 + … + \ ^(2n)C_n x^n + … \ ^(2n)C_(2n) x^(2n)`
`=> text(Coefficient of)\ \ x^n = \ ^(2n)C_n`
`text(Expand)\ \ (1 + x)^n (1 + x)^n:`
`[\ ^nC_0 + \ ^nC_1 x + … + \ ^nC_n x^n][\ ^nC_0 + \ ^nC_1 x + … + \ ^nC_n x^n]`
`=> \ text(Coefficient of)\ \ x^n`
`= \ ^nC_0 · \ ^nC_n + \ ^nC_1 · \ ^nC_(n-1) + … + \ ^nC_(n-1) · \ ^nC_1 + \ ^nC_n · \ ^nC_0`
`= (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_(n-1))^2 + (\ ^nC_n)^2\ \ \ (\ ^nC_k = \ ^nC_(n-k))`
`text(Equating coefficients:)`
`\ ^(2n)C_n = (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_n)^2`
ii. `text(Number of men = Number of women)\ \ (M = W)`
| `text(If)\ \ M = W = 0:` | `text(Ways) = \ ^nC_0 · \ ^nC_0 = (\ ^nC_0)^2` |
| `text(If)\ \ M = W = 1:` | `text(Ways) = \ ^nC_1 · \ ^nC_1 = (\ ^nC_1)^2` |
`vdots`
`text(If)\ \ M = W = n: text(Ways) = \ ^nC_n · \ ^nC_n = (\ ^nC_n)^2`
`:.\ text(Total combinations)`
`= (\ ^nC_0)^2 + (\ ^nC_1)^2 + … + (\ ^nC_n)^2`
`= \ ^(2n)C_n\ \ \ text{(from part (i))}`
iii. `text(Let)\ \ M_L = text(possible male leaders)`
`text(Let)\ \ W_L = text(possible female leaders)`
`text(If)\ \ M = W = 0 => text(no leaders)`
`text(If)\ \ M = W = 1: text(Ways) = \ ^nC_1 xx M_L xx \ ^nC_1 xx W_L = 1^2 (\ ^nC_1)^2`
`text(If)\ \ M = W = 2: text(Ways) = \ ^nC_2 xx 2 xx \ ^nC_2 xx 2 = 2^2 (\ ^nC_2)^2`
`vdots`
`text(If)\ \ M = W = n: text(Ways) = \ ^nC_n xx n xx \ ^nC_2 xx n = n^2 (\ ^nC_n)^2`
`:.\ text(Total combinations)`
`= 1^2(\ ^nC_1)^2 + 2^2(\ ^nC_2)^2 + … + n^2(\ ^nC_n)^2`
| iv. | `text(If)\ \ M = W = 1: text(Ways)` | `= M_L xx \ ^(n-1)C_0 xx W_L xx \ ^(n-1)C_0` |
| `= n xx \ ^(n-1)C_0 xx n xx \ ^(n-1)C_0` | ||
| `= n^2(\ ^(n-1)C_0)^2` |
| `text(If)\ \ M = W = 2: text(Ways)` | `= n xx \ ^(n-1)C_1 xx n xx \ ^(n-1)C_1` |
| `= n^2(\ ^(n-1)C_1)^2` |
`vdots`
| `text(If)\ \ M = W = n:\ text(Ways)` | `= n xx \ ^(n-1)C_(n-1) xx n xx \ ^(n-1)C_(n-1)` |
| `= n^2(\ ^(n-1)C_(n-1))^2` |
`:.\ text(Total combinations)`
`= n^2(\ ^(n-1)C_0)^2 + n^2(\ ^(n-1)C_1)^2 + … + n^2(\ ^(n-1)C_(n-1))^2`
`= n^2 xx \ ^(2(n-1))C_(n-1)\ \ \ text{(using part (i))}`
`= n^2 xx \ ^(2n-2)C_(n-1)`
A fair standard die is rolled 50 times. Let `W` be a random variable with binomial distribution that represents the number of times the face with a six on it appears uppermost.
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. `P(W = k) = \ ^50 C_k ⋅ (1/6)^k ⋅ (5/6)^(50-k)`
| b. | `(P(W = k + 1))/(P(W = k))` | `= (\ ^50C_(k+1) ⋅ (1/6)^(k+1) ⋅ (5/6)^(49-k))/(\ ^ 50C_k ⋅ (1/6)^k ⋅ (5/6)^(50-k))` |
| `= ((50!)/((49-k)!(k + 1)!) ⋅ (1/6))/((50!)/((50-k)! k!) ⋅ (5/6))` | ||
| `= ((50-k)!k!)/(5(49-k)!(k + 1)!)` | ||
| `= (50-k)/(5(k + 1))` |
By using the fact that `(1 + x)^11 = (1 + x)^3(1 + x)^8`, show that
`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(General term of)\ \ (1 + x)^11 :`
`T_k = \ ^11C_k · 1^(11-k) · x^k`
`=> \ ^11C_5\ text(is the co-efficient of)\ x^5`
`(1 + x)^3 = \ ^3C_0 + \ ^3C_1 x + \ ^3C_2 x^2 + \ ^3C_3 x^3`
`(1 + x)^8 = \ ^8C_0 + \ ^8C_1 x + \ ^8C_2 x^2 + \ ^8C_3 x^3 + \ ^8C_4 x^4 + \ ^8C_5 x^5 + …`
`:.\ text(Coefficient of)\ x^5\ text(in)\ \ (1 + x)^3(1 + x)^8 `
`= \ ^3C_0 · \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^3C_3 · \ ^8C_2`
`= \ ^8C_5 + \ ^3C_1 · \ ^8C_4 + \ ^3C_2 · \ ^8C_3 + \ ^8C_2`
`text(Equating coefficients:)`
`((11),(5)) = ((8),(5)) + ((3),(1))((8),(4)) + ((3),(2))((8),(3)) + ((8),(2))`
`(2 - sqrt3)^5 = a + bsqrt3`.
Evaluate `a` and `b` using a binomial expansion. (2 marks)
`a = 362, \ b = -209`
| `(2 – sqrt3)^5` | `= \ ^5C_0 *2^5 + \ ^5C_1* 2^4(−sqrt3) + \ ^5C_2 *2^3(−sqrt3)^2 + \ ^5C_3 *2^2(−sqrt3)^3` |
| `+ \ ^5C_4 *2(−sqrt3)^4 + \ ^5C_5(−sqrt3)^5` | |
| `= 32 – 80sqrt3 + 240 – 120sqrt3 + 90 – 9sqrt3` | |
| `= 362 – 209sqrt3` |
`:. a = 362, \ b = -209`
Show `\ ^nC_k = \ ^nC_(n-k)`. (1 mark)
`text(See Worked Solutions)`
`\ ^nC_k = (n!)/((n-k)!k!)`
| `\ ^nC_(n-k)` | `= (n!)/((n-(n-k))!(n-k)!)` |
| `= (n!)/(k!(n-k)!)` | |
| `= \ ^nC_k` |
Show `\ ^nC_k = \ ^(n-1)C_(k-1) + \ ^(n-1)C_k`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(LHS) = (n!)/((n-k)!k!)`
| `text(RHS)` | `= ((n-1)!)/((n-1-(k-1))!(k-1)!) + ((n-1)!)/((n-1-k)!k!)` |
| `= ((n-1)!k)/((n-k)!(k-1)!k) + ((n-1)!(n-k))/((n-k-1)!(n-k)k!)` | |
| `= ((n-1)!k)/((n-k)!k!) + ((n-1)!(n-k))/((n-k)!k!)` | |
| `= ((n-1)!(k + n-k))/((n-k)!k!)` | |
| `= (n!)/((n-k)!k!)` | |
| `=\ text(LHS)` |
In the expansion of `(5x + 2)^20`, the coefficients of `x^r` and `x^(r + 1)` are equal.
What is the value of `r` ? (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`14`
`(5x + 2)^20`
`text(General term:)\ (2 + 5x)^20`
| `T_r` | `= \ ^20C_r · 2^(20 – r) · (5x)^r` |
| `= \ ^20C_r · 2^(20 – r) · 5^r · x^r` | |
| `T_(r + 1)` | `=\ ^20C_(r + 1) · 2^(19 – r) · 5^(r + 1) · x^(r + 1)` |
`text(Equating co-efficients:)`
| `(20!)/(r!(20 – r)!) · 2^(20 – r) · 5^r` | `= (20!)/((r + 1)!(19 – r)!) · 2^(19 – r) · 5 ^(r + 1)` |
| `2/(20 – r)` | `= 5/(r + 1)` |
| `2r + 2` | `= 100 – 5r` |
| `7r` | `= 98` |
| `r` | `= 14` |
Find the coefficient of `x^4` in the expansion of `(x^2 - 3/x)^5`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`90`
`text(General term:)`
| `T_k` | `= \ ^5C_k(x^2)^(5 – k) · (−3/x)^k` |
| `= \ ^5C_k · x^(10 – 2k)(−3)^k · x^(−k)` | |
| `= \ ^5C_k · x^(10 – 3k) · (−3)^k` |
`text(Coefficient of)\ \ x^4\ \ text(occurs when)`
| `10 – 3k` | `= 4` |
| `3k` | `= 6` |
| `k` | `= 2` |
`:.\ text(Coefficient of)\ \ x^4`
`= \ ^5C_2·(−3)^2`
`= 90`
Using `(1 + x)^4(1 + x)^9 = (1 + x)^13`
show that
`\ ^9C_4 + \ ^4C_1\ ^9C_3 + \ ^4C_2\ ^9C_2 + \ ^4C_3\ ^9C_1 + 1 = \ ^13C_4` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(Expanding)\ \ (1 + x)^13 :`
`T_k = \ ^13C_k · 1^(13-k) · x^k`
`=> \ ^13C_4\ text(is coefficient of)\ x^4`
`(1 + x)^4 = \ ^4C_0 + \ ^4C_1 x + \ ^4C_2 x^2 + \ ^4C_3 x^3 + \ ^4C_4 x^4`
`(1 + x)^9 = \ ^9C_0 + \ ^9C_1 x + \ ^9C_2 x^2 + \ ^9C_3 x^3 + \ ^9C_4 x^4 + …`
`:.\ text(Coefficient of)\ x^4\ text(in)\ \ (1 + x)^4(1 + x)^9`
`= \ ^4C_0·\ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + \ ^4C_4·\ ^9C_0`
`= \ ^9C_4 + \ ^4C_1·\ ^9C_3 + \ ^4C_2·\ ^9C_2 + \ ^4C_3·\ ^9C_1 + 1`
`= \ ^13C_4\ \ …\ text(as required)`
`(1-2sqrt2)^6 = x + ysqrt2`
Evaluate the value of `x` and `y`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = 1593, \ y =-1100`
`text(Using the binomial expansion:)`
`(1-2sqrt2)^6`
`= \ ^6C_0 + \ ^6C_1(-2sqrt2) + \ ^6C_2(-2sqrt2)^2 + \ ^6C_3(-2sqrt2)^3 + \ ^6C_4(-2sqrt2)^4`
`+ \ ^6C_5(-2sqrt2)^5 + \ ^6C_6(-2sqrt2)^6`
`= 1-12sqrt2 + 120 -320sqrt2 + 960-768sqrt2 + 512`
`= 1593-1100sqrt2`
`:.x = 1593, \ y =-1100`
--- 12 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Proof)\ \ text{(See Worked Solutions)}`
ii. `((23), (4)) 2^19`
i. `text(Using binomial expansion:)`
`(2 + x)^n= ((n), (0)) 2^n + ((n), (1)) 2^(n-1) x + ((n), (2)) 2^(n-2) x^2 + … + ((n), (n)) x^n`
`[1 + (1 + x)]^n= ((n), (0)) + ((n), (1)) (1 + x) + ((n), (2)) (1 + x)^2 + … + ((n), (n)) (1 + x)^n`
`=>\ text(S)text(ince both expansions are equal, we can equate the)`
`text(the coefficients of)\ x^r.`
`text(Coefficient of)\ x^r\ text(in the expansion of)\ \ (2+x)^n :`
`((n), (r)) 2^(n-r) qquad …\ text{(1)}`
`text(Coefficient of)\ x^r\ text(in the expansion of)\ \ [1 + (1 + x)]^n :`
`=>x^r\ \ text(exists in all terms where)\ \ n>=r`
`text(Consider the co-efficients of)\ \ x^r ,`
`text(When)\ \ n=r:\ \ ((n), (r))((r), (r))`
`text(When)\ \ n=r+1:\ \ ((n), (r+1))((r+1), (r))`
`vdots`
`text(When)\ \ n=n:\ \ ((n), (n))((n), (r))`
`text{Equating the coefficients:}`
`((n), (r))((r), (r)) + ((n), (r + 1))((r + 1), (r)) + … + ((n), (n))((n), (r)) =((n), (r)) 2^(n-r)`
`text(… as required)`
ii. `text(Consider the possible combinations when,)`
`A\ text(selects 4:)\ \ ((23), (4))((4),(4))`
`A\ text(selects 5:)\ \ ((23), (5))((5),(4))`
`A\ text(selects 6:)\ \ ((23), (6))((6),(4))`
`vdots`
`A\ text(selects 23:)\ \ ((23), (23))((23),(4))`
`:.\ text(Total possibilities)`
`=underbrace{((23), (4))((4),(4)) + ((23), (5))((5),(4)) + … + ((23), (23))((23),(4))}_text{Using part (i)}`
`=((23), (4)) 2^(23-4)`
`= ((23), (4)) 2^(19)`
When expanded, which expression has a non-zero constant term?
A. `(x + 1/(x^2))^7`
B. `(x^2 + 1/(x^3))^7`
C. `(x^3 + 1/(x^4))^7`
D. `(x^4 + 1/(x^5))^7`
`C`
`text(Consider the general term for option)\ A:`
| `T_k` | `= \ ^7C_k · x^(7 – k) · x^(−2k)` |
| `= \ ^7C_k · x^(7 – 3k)` |
`text(Non zero constant term occurs when)`
| `7 – 3k` | `= 0` |
| `k` | `= 7/3 => text(no terms exists)\ (k\ text{not integer)}` |
`text(Consider option)\ C:`
| `T_k` | `= \ ^7C_k · x^(3(7 – k)) · x^(−4k)` |
| `= \ ^7C_k · x^(21 – 7k)` |
| `21 – 7k` | `= 0` |
| `k` | `= 3` |
`:.\ text(Non-zero constant term exists)`
`text(since)\ k\ text(is an integer)`
`⇒C`
Let `p(x) = 1 + x + x^2 + x^3 + … + x^12.`
What is the coefficient of `x^8` in the expansion of `p (x + 1)?`
`=> C`
`p(x + 1) = 1 + (x + 1) + (x + 1)^2 + … + (x + 1)^12`
`text(Coefficient of)\ x^8`
`=\ ^12C_8 +\ ^11C_8 +\ ^10C_8 +\ ^9C_8 +\ ^8C_8`
`= 715`
`=> C`
Let `p` and `q` be positive integers with `p ≤ q`.
--- 6 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `\ ^(p + q)C_q`
ii. `\ ^(p + q)C_q`
i. `(1 + x)^(p + q)`
`=\ ^(p + q)C_0 +\ ^(p + q)C_1 x + … +\ ^(p + q)C_q x^q + … +\ ^(p + q)C_(p + q) · x^(p + q)`
`:.\ text(Independent term of)\ ((1 + x)^(p + q))/(x^q)`
`= (\ ^(p + q)C_q·x^q)/(x^q)`
`=\ ^(p + q)C_q`
ii. `(1 + x)^p(1 + 1/x)^q`
`= (\ ^pC_0 +\ ^pC_1 x + … +\ ^pC_p x^p)`
`xx (\ ^qC_0 +\ ^qC_1 · 1/x + … +\ ^qC_p · 1/(x^p) + … +\ ^qC_q · 1/(x^q))`
`text(The independent term in this expansion)`
`=\ ^pC_0 ·\ ^qC_0 +\ ^pC_1 ·\ ^qC_1 + … +\ ^pC_p ·\ ^qC_p\ text{(since}\ p ≤ q)`
`= 1 +\ ^pC_1 ·\ ^qC_1 + … +\ ^pC_p ·\ ^qC_p`
`text(S)text(ince)\ ((1 + x)^(p + q))/(x^q) = (1 + x)^p(1 + 1/x)^q,\ text(the independent)`
`text(terms are equal.)`
`:.\ ^(p + q)C_q\ text(is a simpler expression for)`
`1 +\ ^pC_1 ·\ ^qC_1 +\ ^pC_2 ·\ ^qC_2 + … +\ ^pC_p ·\ ^qC_p`
Use the binomial theorem to find the term independent of `x` in the expansion of
`(2x-1/x^2)^12.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`
`T_k =\ text(General term of)\ \ (2x-1/x^2)^12`
| `T_k` | `= ((12), (k)) (2x)^(12-k) * (-1)^k * (x^-2)^k` |
| `= ((12), (k)) * 2^(12-k) * x^(12-k) * (-1)^k * x^(-2k)` | |
| `= ((12), (k)) * 2^(12-k) * (-1)^k * x^(12-3k)` |
`\text{Independent term occurs when:}`
`x^(12-3k)= x^0\ \ =>\ \ k=4`
`:.\ text(Independent term is)`
`((12), (4)) * 2^8 * (-1)^4 = 126\ 720`
Two players `A` and `B` play a series of games against each other to get a prize. In any game, either of the players is equally likely to win.
To begin with, the first player who wins a total of 5 games gets the prize.
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
By considering the probability that `A` gets the prize, prove that
--- 10 WORK AREA LINES (style=lined) ---
i. `text(To win exactly 7 games, player)\ A`
`text(must win the 7th game.)`
`:.P(A\ text{wins in 7 games)}`
`=\ ^6C_4 · (1/2)^4(1/2)^2 xx 1/2`
`=\ ^6C_4(1/2)^7`
ii. `Ptext{(wins in at most 7 games)}`
`=Ptext{(wins in 5, 6 or 7 games)}`
`=\ ^4C_4(1/2)^4 xx 1/2 +\ ^5C_4(1/2)^4(1/2) xx 1/2 +\ ^6C_4(1/2)^7`
`=\ ^4C_4(1/2)^5 +\ ^5C_4(1/2)^6 +\ ^6C_4(1/2)^7`
iii. `text(Prove that)`
`\ ^nC_n · 2^n +\ ^(n + 1)C_n · 2^(n-1) + … +\ ^(2n)C_n = 2^(2n)`
`P(A\ text(wins in)\ (n + 1)\ text{games)}`
`=\ ^nC_n(1/2)^(n + 1) +\ ^(n + 1)C_n(1/2)^(n + 2) + … +\ ^(2n)C_n(1/2)^(2n + 1)`
`text{One player must have won after (2n + 1) games are played.}`
`text(S)text(ince each player has an equal chance,)`
`\ ^nC_n(1/2)^(n + 1) +\ ^(n + 1)C_n(1/2)^(n + 2) + … +\ ^(2n)C_n(1/2)^(2n + 1) = 1/2`
`text(Multiply both sides by)\ 2^(2n + 1):`
`\ ^nC_n2^(-(n + 1)) · 2^(2n + 1) +\ ^(n + 1)C_n · 2^(-(n + 2)) · 2^(2n + 1) + …`
`… +\ ^(2n)C_n · 2^(-(2n + 1)) · 2^(2n + 1) = 2^(-1) · 2^(2n + 1)`
`:. \ ^nC_n · 2^n +\ ^(n + 1)C_n · 2^(n-1) + … +\ ^(2n)C_n = 2^(2n)`
Consider the binomial expansion
`(2x + 1/(3x))^18 = a_0x^(18) + a_1x^(16) + a_2x^(14) + …`
where `a_0, a_1, a_2`, . . . are constants.
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need co-efficient of)\ x^(14)`
`text(General term of)\ (2x + 1/(3x))^(18)`
| `T_k` | `= \ ^(18)C_k(2x)^(18 − k) · (1/(3x))^k` |
| `= \ ^(18)C_k · 2^(18 − k) · x^(18 − k) · 3^(−k) · x^(−k)` | |
| `= \ ^(18)C_k · 2^(18 − k) · 3^(−k) · x^(18 − 2k)` |
`a_2\ text(occurs when:)`
| `18 − 2k` | `= 14` |
| `2k` | `= 4` |
| `k` | `= 2` |
| `:.a_2` | `= \ ^(18)C_2 · 2^(18 − 2) · 3^(−2)` |
| `= (\ ^(18)C_2 · 2^(16))/(3^2)` |
ii. `text(Independent term occurs when:)`
| `18 − 2k` | `= 0` |
| `2k` | `= 18` |
| `k` | `= 9` |
`:.\ text(Independent term)`
`= \ ^(18)C_9 · 2^(18− 9) · 3^(−9)`
`= (\ ^(18)C_9 · 2^9)/(3^9)`
Find an expression for the coefficient of `x^8 y^4` in the expansion of `(2x + 3y)^12`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`10\ 264\ 320`
`text(Find co-efficient of)\ x^8 y^4 :`
`T_k =\ text(General term of)\ (2x + 3y)^12 `
| `T_k` | `= ((12),(k)) (2x)^(12 – k) * (3y)^k` |
| `= ((12),(k)) * 2^(12 – k) * 3^k * x^(12 – k) * y^k` |
`x^8 y^4\ text(occurs when)\ k = 4`
| `T_4` | `= ((12),(4)) * 2^(12 – 4) * 3^4 * x^8 y^4` |
| `:.\ text(Co-efficient of)\ x^8y^4` | |
| `= ((12),(4)) * 2^8 * 3^4` | |
| `= 10\ 264\ 320` | |
Use the binomial theorem to show that
`0 = ((n),(0))-((n),(1)) + ((n),(2))-... + (-1)^n ((n),(n))`. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Prove)`
`0 = ((n),(0))-((n),(1)) + ((n),(2))-… + (-1)^n ((n),(n))`
`text(Using binomial expansion:)`
`(1 + x)^n = ((n),(0)) + ((n),(1))x + ((n),(2))x^2 + … + ((n),(n))x^n`
`text(Let)\ \ x = -1`
`:. 0 = ((n),(0))-((n),(1)) + ((n),(2))-… + (-1)^n ((n),(n))`
What is the constant term in the binomial expansion of `(2x - 5/(x^3))^12`?
`C`
`text(General term)`
| `T_k` | `= ((12),(k)) (2x)^(12-k) * (-1)^k *(5x^(-3))^k` |
| `= ((12),(k)) 2^(12-k) * x^(12-k) * (-1)^k * 5^k * x^(-3k)` | |
| `= ((12),(k)) (-1)^k * 2^(12-k) * 5^k * x^(12-4k)` |
`text(Constant term when)`
| `12 – 4k` | `= 0` |
| `k` | `= 3` |
`:.\ text(Constant term)`
`=((12),(3)) (-1)^3 * 2^9 * 5^3`
`= – ((12),(3)) * 2^9 * 5^3`
`=> C`
--- 3 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `((4n),(2n))`
ii. `text(Proof)\ \ text{(See Worked Solutions)}`
iii. `text(Proof)\ \ text{(See Worked Solutions)}`
i. `text(Find co-efficient of)\ x^(2n).`
`text(Expanding)\ (1+x)^(4n):`
`((4n),(0)) + ((4n),(1))x + ((4n),(2))x^2 + … + ((4n),(2n))x^(2n) + …`
`:.\ text(Co-efficient of)\ \ x^(2n)\ text(is)\ ((4n),(2n))`
ii. `text(Show)\ (1 + x^2 + 2x)^(2n) = sum_(k=0)^(2n) ((2n),(k)) x^(2n-k) (x + 2)^(2n-k)`
`text(Using)\ (1 + x^2 + 2x)^(2n) = [x(x + 2) + 1]^(2n)`
| `[x (x + 2) + 1]^(2n)` |
| `= ((2n),(0)) (x(x + 2))^(2n) + ((2n),(1)) (x(x + 2))^(2n-1) + … + ((2n),(2n))` |
| `= ((2n),(0)) x^(2n)(x + 2)^(2n) + ((2n),(1)) x^(2n-1) (x + 2)^(2n-1) + … + ((2n),(2n))` |
| `= sum_(k=0)^(2n) ((2n),(k)) x^(2n-k) (x + 2)^(2n-k)\ text(… as required.)` |
iii. `((4n),(2n))\ text(is the co-eff of)\ x^(2n)\ text(in expansion)\ (1+x)^(4x)`
`text(S)text(ince)\ (1 + x^2 + 2x)^(2n) = ((x+1)^2)^(2n) = (1 + x)^(4n)`
`=> ((4n),(2n))\ text(is co-efficient of)\ x^(2n)\ text(in expansion)\ (1 + x^2 + 2x)^(2n)`
`text(Using part)\ text{(ii):}`
`(1 + x^2 + 2x)^(2n) = sum_(k=0)^(2n) ((2n),(k))\ x^(2n-k) (x + 2)^(2n-k)`
`text(Using the given identity,)\ x^(2n)\ text(co-efficients are:)`
| `k = 0,` | `\ ((2n),(0))((2n-0),(0)) 2^(2n-0)` |
| `k = 1,` | `\ ((2n),(1))((2n-1),(1)) 2^(2n-1-1)` |
| `vdots` | |
| `k = n,` | `\ ((2n),(n))((2n-n),(n)) 2^(2n-n-n)` |
| `:.\ ((4n),(2n))` |
| `= ((2n),(0))((2n),(0))2^(2n) + ((2n),(1))((2n-1),(1))2^(2n-2) + … + ((2n),(n))((n),(n)) 2^0` |
| ` = sum_(k=0)^(n)\ ((2n),(k))((2n-k),(k)) 2^(2n-2k)\ \ \ \ text(… as required)` |
The binomial theorem states that
`(1 + x)^n = ((n),(0)) + ((n),(1))x + ((n),(2))x^2 + ((n),(3))x^3 + ... + ((n),(n))x^n.`
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Proof)\ \ text{(See Worked Solutions)}`
ii. `2^100`
`text(Proof)\ \ text{(See Worked Solutions)}`
i. `(1 + x)^n = ((n),(0)) + ((n),(1))x + … + ((n),(n))x^n`
`text(Let)\ \ x = 1:`
| `(1 + 1)^n` | `= ((n),(0)) + ((n),(1))1 + ((n),(2))1^2 + … + ((n),(n))1^n` |
| `2^n` | `= ((n),(0)) + ((n),(1)) + … + ((n),(n))` |
| `= sum_(k=0)^n ((n),(k))\ text(… as required)` |
ii. `text{Using part (i), let}\ \ n=100:`
`((100),(0)) + ((100),(1)) + ((100),(2)) + … + ((100),(100)) = 2^100`
Find an expression for the coefficient of `x^2` in the expansion of `(3x - 4/x)^8`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`-870\ 912`
`(3x – 4/x)^8 = sum_(k=0)^8\ ^8C_k *(3x)^(8\ – k) *(–4/x)^k`
| `text(General term)` | `=\ ^8C_k * 3^(8\ – k) * x^(8\ – k) * (–1)^k*4^k * x^(-k)` |
| `=\ ^8C_k*(–1)^k * 3^(8\ – k) * 4^k * x^(8\ – 2k)` |
`text(Co-efficient of)\ \ x^2=2\ \ text(occurs when,)`
| ` 8 – 2k` | `= 2` |
| `2k` | `= 6` |
| `k` | `= 3` |
`:.\ text(Co-efficient of)\ \ x^2`
| `=\ ^8C_3 * (–1)^3*3^5 * 4^3` |
| `= -56 xx 243 xx 64` |
| `= -870\ 912` |
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(General term)`
`\ ^12C_k * (2x^3)^(12\ – k) (-1/x)^k`
`=\ ^12C_k * (–1)^k *2^(12\ – k) * x^(36\ – 3k) * x^(-k)`
`=\ ^12C_k * (–1)^k*2^(12\ – k) * x^(36\ – 4k)`
`text(Constant term occurs when)`
| `36\ – 4k` | `= 0` |
| `k` | `= 9` |
| `:.\ text(Constant term)` | `=\ ^12C_9 * (–1)^9*2^3` |
| `= – (12!)/(3!9!) xx 8` | |
| `= – 1760` |
ii. `text(General term of)\ (2x^3\ – 1/x)^n`
`\ ^nC_k * (2x^3)^(n\ – k) (–1/x)^k`
`=\ ^nC_k * 2^(n\ – k) * x^(3n\ – 3k) * (–1)^k * x^(-k)`
`=\ ^nC_k * (–1)^k*2^(n\ -k) * x^(3n\ – 4k)`
`text(Constant term when)\ \ 3n\ – 4k = 0.`
`text(i.e.)\ \ k=3/4n`
`text(S)text(ince)\ n\ text(and)\ k\ text(must be integers,)\ \ n\ \ text(must)`
`text(be a multiple of 4.)`