SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2021 VCAA 2

Four rectangles of equal width are drawn and used to approximate the area under the parabola  `y = x^2`  from  `x = 0`  to  `x = 1`.

The heights of the rectangles are the values of the graph of  `y = x^2` at the right endpoint of each rectangle, as shown in the graph below.
 

  1. State the width of each of the rectangles shown above.  (1 mark)
  2. Find the total area of the four rectangles shown above.  (1 mark)
  3. Find the area between the graph of  `y = x^2`, the `x`-axis and the line  `x=1`.  (2 marks)
  4. The graph of `f` is shown below.
     
         

    Approximate  `int_(-2)^2 f(x)\ dx`  using four rectangles of equal width and the right endpoint of each rectangle.  (1 mark)

Parts of the graphs of  `y = x^2`  and  `y = sqrtx`  are shown below.
 
     

  1. Find the area of the shaded region.  (1 mark)
  2. The graph of  `y=x^2` is transformed to the graph of  `y = ax^2`, where  `a ∈ (0, 2]`.
  3. Find the values of `a` such that the area defined by region(s) bounded by the graphs of  `y = ax^2`  and  `y = sqrtx`  and the lines  `x = 0`  and  `x = a`  is equal to `1/3`. Give your answer correct to two decimal places.  (4 marks)
Show Answers Only
  1. `0.25`
  2. `15/32\ text(u)^2`
  3. `1/3\ text(u)^2`
  4. `-2`
  5. `1/3\ text(u)^2`
  6. `1.13`
Show Worked Solution

a.   `0.25`

 

b.    `text{Area}` `= 1/4 (1/16 + 1/4 + 9/16 + 1)`
    `= 15/32\ text(u)^2`

 

c.    `text{Area}` `= int_0^1 x^2 dx`
    `= 1/3\ text(u)^2`

 

d.

♦♦♦ Mean mark part (d) 16%.

`int_-2^2 f(x)\ dx` `≈ 6 + 2 – 4 – 6`
  `≈ -2`

 

e.   `text{Area}` `= int_0^1 (sqrtx – x^2) dx`
    `= 1/3\ text(u)^2`

 
f.   `text{Case 1:} \ a ≤ 1`

♦♦♦ Mean mark part (f) 18%.

`int_0^a (sqrtx – ax^2) dx = 1/3`

`a =  0.77 \ \ text{or} \ \ a = 1.00`
  

`text{Case 2:} \ a > 1`

`sqrtx = ax^2 \ => \ x = a^{- 3/2}`

`text{Solve for}\ a\ text{(by CAS)}:`

`int_0^{a^{- 3/2}} (sqrtx – ax^2) dx + int_{a^{- 3/2}}^a (sqrtx – ax^2) dx = 1/3`

`:. a = 1.13`

Filed Under: Area Under Curves (old) Tagged With: Band 3, Band 4, Band 6, smc-723-10-Quadratic, smc-723-70-Other, smc-723-80-Area between graphs, smc-723-90-Approximations

Calculus, MET2 2018 VCAA 16 MC

Jamie approximates the area between the `x`-axis and the graph of  `y = 2 cos(2x) + 3`, over the interval  `[0, pi/2]`, using the three rectangles shown below.
 


 

Jamie’s approximation as a fraction of the exact area is

A.   `5/9`

B.   `7/9`

C.   `9/11`

D.   `11/18`

E.   `7/3`

Show Answers Only

`B`

Show Worked Solution

`text(Area of rectangles)`

♦ Mean mark 49%.

`= pi/6 xx f(pi/6) + pi/6 xx f(pi/3) + pi/6 xx f(pi/2)`

`= (7pi)/6\ text(u²)`

`text(Actual Area) = int_0^(pi/2) 2 cos (2x) + 3\ dx = (3 pi)/2`

 
`:.\ text(Fraction of exact area)`

`= (7 pi)/6 ÷ (3 pi)/2`

`= 7/9`

 
`=>   B`

Filed Under: Area Under Curves (old) Tagged With: Band 5, smc-723-60-Trig, smc-723-90-Approximations

Calculus, MET2 2008 VCAA 1 MC

VCAA 2008 1mc

The area under the curve  `y = sin (x)`  between  `x = 0`  and  `x  = pi/2`  is approximated by two rectangles as shown.

This approximation to the area is

A.   `1`

B.   `pi/2`

C.   `((sqrt 3 + 1) pi)/12`

D.   `0.5`

E.   `((sqrt 3 + 1) pi)/6`

Show Answers Only

`C`

Show Worked Solution

`text(Rectangle width) = pi/6`

`text(Area)` `~~ pi/6 [sin (pi/6) + sin (pi/3)]`
  `~~pi/6(sqrt3/2 + 1/2)`
  `~~ (pi (sqrt 3 + 1))/12`

`=>   C`

Filed Under: Area Under Curves (old) Tagged With: Band 4, smc-723-60-Trig, smc-723-90-Approximations

Calculus, MET2 2011 VCAA 19 MC

A part of the graph of  `f: R -> R, f(x) = x^2`  is shown below. Zoe finds the approximate area of the shaded region by drawing rectangles as shown in the second diagram.

met2-2011-vcaa-19-mc

Zoe's approximation is  `ptext(%)` more than the exact value of the area.

The value of `p` is closest to

A.   `10`

B.   `15`

C.   `20`

D.   `25`

E.   `30`

Show Answers Only

`=> D`

Show Worked Solution
`A_text(exact)` `= int_0^6 x^2 dx`
  `= 72`
♦ Mean mark 43%.
`A_text(approx)`

`= 1[f(1) + f(2) + f(3) + …`

       `+ f(4) + f(5) + f(6)]`

  `= 91`

 

`p text(%)` `= text(increase)/text(exact area) xx 100`
  `= (91 – 72)/72 xx 100`
  `= 26.4 text(%)`

`=> D`

Filed Under: Area Under Curves (old) Tagged With: Band 5, smc-723-10-Quadratic, smc-723-90-Approximations

Calculus, MET2 2013 VCAA 14 MC

Consider the graph of  `y = 2^x + c`, where `c` is a real number. The area of the shaded rectangles is used to find an approximation to the area of the region that is bounded by the graph, the `x`-axis and the lines  `x = 1`  and  `x = 5.`

If the total area of the shaded rectangles is 44, then the value of `c` is

A.   `14`

B.   `-4`

C.   `14/5`

D.   `7/2`

E.   `-16/5`

Show Answers Only

`D`

Show Worked Solution

`text(Finding the shaded area:)`

`44`  `=(2^1 + c) 1 + (2^2 + c) 1 + (2^3 + c) 1 + (2^4 + c) 1`
`44` `=(2+c) + (4+c) + (8+c) + (16+c)`
`14` `=4c`
`:. c` `=7/2`

 
`=>   D`

 

Filed Under: Area Under Curves (old) Tagged With: Band 4, smc-723-50-Log/Exponential, smc-723-90-Approximations

Calculus, MET2 2014 VCAA 19 MC

Jake and Anita are calculating the area between the graph of  `y = sqrt x`  and the `y`-axis between  `y = 0`  and  `y = 4.`

Jake uses a partitioning, shown in the diagram below, while Anita uses a definite integral to find the exact area.
 

VCAA 2014 19mc
 

The difference between the results obtained by Jake and Anita is

A.   `0`

B.   `22/3`

C.   `26/3`

D.   `14`

E.   `35`

Show Answers Only

`C`

Show Worked Solution

`text(Jake:)`

`A_J` `~~ 1[1 + 4 + 9 + 16]`
  `~~ 30`

 

`text(Anita:)`

`A_A = 16 xx 4 – int_0^16 sqrtx\ dx`

`text(or)`

`A_A` `= int_0^4 y^2\ dy`
  `= 64/3`

 

`:.\ text(Difference)` `= 30 – 64/3`
  `= 26/3`

`=>   C`

Filed Under: Area Under Curves (old) Tagged With: Band 4, smc-723-30-Square root, smc-723-90-Approximations

Calculus, MET2 2012 VCAA 14 MC

The graph of  `f: R^+ uu {0} -> R,\ f(x) = sqrt x`  is shown below.

In order to find an approximation to the area of the region bounded by the graph of  `f`, the `y`-axis and the line  `y = 4`, Zoe draws four rectangles, as shown, and calculates their total area.

VCAA 2012 14mc

Zoe's approximation to the area of the region is

A.   `14`

B.   `21`

C.   `29`

D.   `30`

E.   `64/3`

Show Answers Only

`D`

Show Worked Solution

`text(Width of each rectangle)\ = 1`

`text(Height of each rectangle:)`

`text(When)\ \ y=1 => 1=sqrt x, \ x=1`

`text(When)\ \ y=2\ => 2=sqrt x, \ x=4`

`text(When)\ \ y=3 => x=9`

`text(When)\ \ y=2 => x=16`

 

`:. A` `~~ 1[1 + 4 + 9 + 16]`
  `~~ 30\ \ text(u²)`

`=>   D`

Filed Under: Area Under Curves (old) Tagged With: Band 4, smc-723-30-Square root, smc-723-90-Approximations

Copyright © 2014–2025 SmarterEd.com.au · Log in