The diagram shows lines in the emission spectrum of hydrogen.
The production of this spectrum can be explained by applying the atomic model developed by which scientist?
- Balmer
- Bohr
- Planck
- Rutherford
Aussie Maths & Science Teachers: Save your time with SmarterEd
The diagram shows lines in the emission spectrum of hydrogen.
The production of this spectrum can be explained by applying the atomic model developed by which scientist?
\(B\)
\(\Rightarrow B\)
An ideal transformer converts 240 V to 2200 V.
Which row in the table best describes the transformer?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ & \\
\ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Type of}& \text{Number of turns in}& \text{Number of turns in} \\
\quad \text{transformer}\quad \rule[-1ex]{0pt}{0pt}& \text{primary coil}& \text{secondary coil} \\
\hline
\rule{0pt}{2.5ex}\text{Step up}\rule[-1ex]{0pt}{0pt}&\text{120}&\text{1100}\\
\hline
\rule{0pt}{2.5ex}\text{Step up}\rule[-1ex]{0pt}{0pt}& \text{1100}&\text{120}\\
\hline
\rule{0pt}{2.5ex}\text{Step down}\rule[-1ex]{0pt}{0pt}& \text{12}&\text{1100} \\
\hline
\rule{0pt}{2.5ex}\text{Step down}\rule[-1ex]{0pt}{0pt}& \text{1100} &\text{120}\\
\hline
\end{array}
\end{align*}
\(A\)
\(\Rightarrow A\)
Which of the following did Maxwell contribute to the understanding of the nature of light?
\(B\)
\(\Rightarrow B\)
A student conducts an experiment to determine the work function of potassium.
The following diagram depicts the experimental setup used, where light of varying frequency is incident on a potassium electrode inside an evacuated tube.
For each frequency of light tested, the voltage in the circuit is varied, and the minimum voltage (called the stopping voltage) required to bring the current in the circuit to zero is recorded.
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ \textit{Frequency of incident light} \ \ & \quad \quad \quad \textit{Stopping voltage} \quad \quad \quad \\
\left(\times 10^{15} \ \text{Hz}\right) \rule[-1ex]{0pt}{0pt}& \text{(V)}\\
\hline
\rule{0pt}{2.5ex}0.9 \rule[-1ex]{0pt}{0pt}& 1.5 \\
\hline
\rule{0pt}{2.5ex}1.1 \rule[-1ex]{0pt}{0pt}& 2.0 \\
\hline
\rule{0pt}{2.5ex}1.2 \rule[-1ex]{0pt}{0pt}& 2.5 \\
\hline
\rule{0pt}{2.5ex}1.3 \rule[-1ex]{0pt}{0pt}& 3.0 \\
\hline
\rule{0pt}{2.5ex}1.4 \rule[-1ex]{0pt}{0pt}& 3.5 \\
\hline
\rule{0pt}{2.5ex}1.5 \rule[-1ex]{0pt}{0pt}& 4.0 \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
b. Features shown in experiment results:
b. Features shown in experiment results:
The diagram shows components of the innate immune system in humans.
State the role of TWO components that protect against infection. (2 marks)
\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex}\quad \quad \textit{Component} \quad \quad \rule[-1ex]{0pt}{0pt} & \quad \quad \textit{How it protects against infection}\quad \quad \rule[-1ex]{0pt}{0pt}\\
\hline
\ & \\
\ & \\
\ & \\
\ & \\
\ & \\
\hline
\ & \\
\ & \\
\ & \\
\ & \\
\ & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
Any TWO of the following components
\begin{array} {|l|l|}
\hline
\rule{0pt}{2.5ex}\textit{Component} \quad \quad \rule[-1ex]{0pt}{0pt} & \textit{How it protects against infection}\quad\rule[-1ex]{0pt}{0pt}\\
\hline
\text{Skin} & \text{Acts as a physical barrier}\\
\ & \text{preventing pathogen entry into} \\
\ & \text{tissue}\\
\hline
\text{Stomach} &\text{Destroys ingested pathogens} \\
\text{acid} & \text{through low pH chemical}\\
\ & \text{environment.}\\
\hline
\text{Mucus} &\text{Traps pathogens and prevents} \\
\text{lining} & \text{their entry into underlying}\\
\ & \text{tissues.}\\
\hline
\text{Nasal} &\text{Filters and traps airborne} \\
\text{hair} & \text{pathogens, preventing}\\
\ & \text{respiratory entry.}\\
\hline
\text{Tear glands} &\text{Produce lysozyme enzyme that} \\
\ & \text{destroys bacterial cell walls.}\\
\hline
\text{Urinary} &\text{Flushes pathogens from the} \\
\text{tract} & \text{urethra preventing infection.}\\
\hline
\end{array}
Any TWO of the following components
\begin{array} {|l|l|}
\hline
\rule{0pt}{2.5ex}\textit{Component} \quad \quad \rule[-1ex]{0pt}{0pt} & \textit{How it protects against infection}\quad\rule[-1ex]{0pt}{0pt}\\
\hline
\text{Skin} & \text{Acts as a physical barrier}\\
\ & \text{preventing pathogen entry into} \\
\ & \text{tissue}\\
\hline
\text{Stomach} &\text{Destroys ingested pathogens} \\
\text{acid} & \text{through low pH chemical}\\
\ & \text{environment.}\\
\hline
\text{Mucus} &\text{Traps pathogens and prevents} \\
\text{lining} & \text{their entry into underlying}\\
\ & \text{tissues.}\\
\hline
\text{Nasal} &\text{Filters and traps airborne} \\
\text{hair} & \text{pathogens, preventing}\\
\ & \text{respiratory entry.}\\
\hline
\text{Tear glands} &\text{Produce lysozyme enzyme that} \\
\ & \text{destroys bacterial cell walls.}\\
\hline
\text{Urinary} &\text{Flushes pathogens from the} \\
\text{tract} & \text{urethra preventing infection.}\\
\hline
\end{array}
Solve for \(x\), giving your answers in the simplest form \(a+b\sqrt{c}\) where \(a, b\) and \(c\) are real:
\(5 x^2-20 x+4=0\) (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(x=2 \pm \dfrac{4}{5} \sqrt{5}\)
\(5 x^2-20 x+4=0\)
| \(x\) | \(=\dfrac{-b \pm \sqrt{b^2-4 a c}}{2 a}\) |
| \(=\dfrac{20 \pm \sqrt{20^2-4 \times 5 \times 4}}{2 \times 5}\) | |
| \(=\dfrac{20 \pm \sqrt{320}}{10}\) | |
| \(=2 \pm \dfrac{8 \sqrt{5}}{10}\) | |
| \(=2 \pm \dfrac{4}{5} \sqrt{5}\) |
What are the solutions to \(3x^2+2x-4=0\)?
\(A\)
\(3 x^2+2 x-4=0\)
| \(x\) | \(=\dfrac{-b \pm \sqrt{b^2-4 a c}}{2a}\) |
| \(=\dfrac{-2 \pm \sqrt{2^2-4 \times 3 \times-4}}{2 \times 3}\) | |
| \(=\dfrac{-2 \pm \sqrt{52}}{6}\) | |
| \(=\dfrac{-1 \pm \sqrt{13}}{3}\) |
\(\Rightarrow A\)
The diagram represents the parts of the AC system used to transfer energy from a power station to people's houses.
Describe the energy transformations that take place in the transformers, and in the transmission line. (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=blank) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
a. \(y=\dfrac{4-1}{-3-2}=-\dfrac{3}{5}\)
b. \(\text {Substitute}\ (7,-2) \ \text{into equation:}\)
| \(-2\) | \(=-\dfrac{3}{5} \times 7+\dfrac{11}{5}\) |
| \(-2\) | \(=-\dfrac{21}{5}+\dfrac{11}{5}\) |
| \(-2\) | \(=-2 \ \text{(correct)}\) |
\(\therefore (7,-2) \text{ lies on line.}\)
a. \((2,1),(-3,4)\)
\(\text{Gradient}=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{4-1}{-3-2}=-\dfrac{3}{5}\)
\(\text{Find equation with} \ \ m=-\dfrac{3}{5} \ \ \text{through}\ \ (2,1):\)
| \(y-1\) | \(=-\dfrac{3}{5}(x-2)\) |
| \(y\) | \(=-\dfrac{3}{5} x+\dfrac{11}{5}\) |
b. \(\text {Substitute}\ (7,-2)\ \text{into equation:}\)
| \(-2\) | \(=-\dfrac{3}{5} \times 7+\dfrac{11}{5}\) |
| \(-2\) | \(=-\dfrac{21}{5}+\dfrac{11}{5}\) |
| \(-2\) | \(=-2 \ \text{(correct)}\) |
\(\therefore (7,-2) \text{ lies on line.}\)
Simplify \(\dfrac{x^2}{x^2-2 x-15}-\dfrac{x}{x+3}\). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{5 x}{(x+3)(x-5)}\)
| \(\dfrac{x^2}{x^2-2 x-15}-\dfrac{x}{x+3}\) | \(=\dfrac{x^2}{(x+3)(x-5)}-\dfrac{x}{x+3}\) |
| \(=\dfrac{x^2-x(x-5)}{(x+3)(x-5)}\) | |
| \(=\dfrac{x^2-x^2+5 x}{(x+3)(x-5)}\) | |
| \(=\dfrac{5 x}{(x+3)(x-5)}\) |
Simplify \(\dfrac{a^3 b-a b^3}{a^2+2 a b+b^2}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{a b(a-b)}{a+b}\)
| \(\dfrac{a^3 b-a b^3}{a^2+2 a b+b^2}\) | \(=\dfrac{a b\left(a^2-b^2\right)}{(a+b)^2}\) |
| \(=\dfrac{a b(a+b)(a-b)}{(a+b)^2}\) | |
| \(=\dfrac{a b(a-b)}{a+b}\) |
A scientist has two unlabelled sources of radiation. Once source emits alpha particles and the other emits beta particles.
Outline TWO methods that could be used to determine which source is the alpha emitter, and which source is the beta emitter. (3 marks)
--- 8 WORK AREA LINES (style=blank) ---
Method 1:
Method 2:
Answers could also include:
Method 1:
Method 2:
Answers could also include:
The mass `M` kg of a baby pig at age `x` days is given by `M = A(1.1)^x` where `A` is a constant. The graph of this equation is shown.
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `1.5\ text(kg)`
ii. `10text(%)`
i. `text(When)\ x = 0:`
| `1.5` | `= A(1.1)^0` |
| `:. A` | `= 1.5\ text(kg)` |
ii. `text(Daily growth rate)\ = 0.1 = 10text(%)`
What is the percentage increase in the number of bacteria? (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
What is the number of bacteria after 15 hours? (1 mark)
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \text{Time in hours $(t)$} \rule[-1ex]{0pt}{0pt} & \;\; 0 \;\; & \;\; 5 \;\; & \;\; 10 \;\; & \;\; 15 \;\; \\
\hline
\rule{0pt}{2.5ex} \text{Number of bacteria ( $n$ )} \rule[-1ex]{0pt}{0pt} & \;\; 100 \;\; & \;\; 193 \;\; & \;\; 371 \;\; & \;\; ? \;\; \\
\hline
\end{array}
--- 1 WORK AREA LINES (style=lined) ---
Use about half a page for your graph and mark a scale on each axis. (2 marks)
--- 10 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(14%)`
ii. `714`
iii. `text(Proof)\ \ text{(See Worked Solutions)}`
iv. `text(8.4 hours)`
i. `text(Percentage increase)`
`= (114 -100)/100 xx 100`
`= 14text(%)`
ii. `n = 100(1.14)^t`
`text(When)\ \ t = 15,`
`n= 100(1.14)^15= 713.793\ …\ = 714\ \ \ text{(nearest whole)}`
| iii. | ![]() |
iv. `text(Using the graph)`
`text(The number of bacteria reaches 300 after ~ 8.4 hours.)`
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=blank) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=blank) ---
Consider the function \(y=f(x)\) where
\(f(x)= \begin{cases}x^2+6, & \text { for } x \leqslant 0 \\ 6, & \text { for } 0<x \leqslant 3 \\ 2^x, & \text { for } x>3\end{cases}\)
--- 12 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
The distance from the earth to the sun is approximately 150 million kilometres.
This distance expressed in scientific notation is:
\(B\)
\(150\ \text{million}\ =\ 150\,000\,000=1.5\times 10^8\)
\(\Rightarrow B\)
A Physics class of 12 students is going on a 4 day excursion by bus.
The students are asked to each pack one bag for the trip. The bags are weighed, and the weights (in kg) are listed in order as follows:
\(8,\ \ 9, \ \ 10,\ \ 10, \ \ 15, \ \ 18, \ \ 22, \ \ 25, \ \ 29, \ \ 35, \ \ 38, \ \ 41 \)
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Five number Summary}\)
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \text{Minimum} \rule[-1ex]{0pt}{0pt} & 8\\
\hline
\rule{0pt}{2.5ex} \ Q_1 \rule[-1ex]{0pt}{0pt} & 10 \\
\hline
\rule{0pt}{2.5ex} \text{Median} \rule[-1ex]{0pt}{0pt} & 20\\
\hline
\rule{0pt}{2.5ex} \ Q_3 \rule[-1ex]{0pt}{0pt} & 32 \\
\hline
\rule{0pt}{2.5ex} \text{Maximum} \rule[-1ex]{0pt}{0pt} & 41\\
\hline
\end{array}
b. \(22\)
a. \(\text{Five number Summary}\)
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \text{Minimum} \rule[-1ex]{0pt}{0pt} & 8\\
\hline
\rule{0pt}{2.5ex} \ Q_1 \rule[-1ex]{0pt}{0pt} & 10 \\
\hline
\rule{0pt}{2.5ex} \text{Median} \rule[-1ex]{0pt}{0pt} & 20\\
\hline
\rule{0pt}{2.5ex} \ Q_3 \rule[-1ex]{0pt}{0pt} & 32 \\
\hline
\rule{0pt}{2.5ex} \text{Maximum} \rule[-1ex]{0pt}{0pt} & 41\\
\hline
\end{array}
| b. | \(\text{IQR}\) | \(=Q_3-Q_1\) |
| \(=32-10=22\) |
If \(d=\sqrt{\dfrac{h}{5}}\), what is the value of \(d\), correct to one decimal place, when \(h=28\)?
\(B\)
\(\text{When}\ h=28:\)
| \(d\) | \(=\sqrt{\dfrac{h}{5}}\) |
| \(d\) | \(=\sqrt{\dfrac{28}{5}}\) |
| \(=2.366…\) | |
| \(=2.4\ (\text{1 deccimal place})\) |
\(\Rightarrow B\)
Arrange the numbers \(5.6\times 10^{-2}\), \(4.8\times 10^{-1}\), \(7.2\times 10^{-2}\) from smallest to largest.
\(A\)
\(5.6\times 10^{-2}=0.052\)
\(4.8\times 10^{-1}=0.48\)
\(7.2\times 10^{-2}=0.072\)
\(\therefore\ \text{Correct order is: }\ 5.6\times 10^{-2}\), \(7.2\times 10^{-2}\), \(4.8\times 10^{-1}\)
\(\Rightarrow A\)
Jerico is the manager of a weekend market in which there are 220 stalls for rent. From past experience, Jerico knows that if he charges \(d\) dollars to rent a stall. then the number of stalls, \(s\), that will be rented is given by:
\(s=220-4d\)
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & \ & \ & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(190\ \text{stalls will be rented}\)
b.
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & 180 \ & 100 \ & 20 \\
\hline
\end{array}
c.
d. \(\text{When}\ d=60, s=220-4\times 60=-20\)
\(\therefore\ \text{It does not make sense to charge }$60\ \text{ per stall}\)
\(\text{as you cannot have a negative number of stalls.}\)
| a. | \(s\) | \(=220-4d\) |
| \(=220-4\times 7.50\) | ||
| \(=190\) |
\(190\ \text{stalls will be rented}\)
b.
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \quad d\quad \rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 10\quad\rule[-1ex]{0pt}{0pt} & \rule{0pt}{2.5ex} \quad 30\quad & \rule{0pt}{2.5ex} \quad 50\quad \\
\hline
\rule{0pt}{2.5ex} \quad s\quad \rule[-1ex]{0pt}{0pt} & 180 \ & 100 \ & 20 \\
\hline
\end{array}
c.
d. \(\text{When}\ d=60, s=220-4\times 60=-20\)
\(\therefore\ \text{It does not make sense to charge }$60\ \text{ per stall}\)
\(\text{as you cannot have a negative number of stalls.}\)
Rationalise the denominator in \(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}\), and express in the simplest form. (2 marks)
\(\dfrac{\sqrt{15}-\sqrt{6}-\sqrt{10}+2}{3} \)
\(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \times \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}\)
\(=\dfrac{(\sqrt{3}-\sqrt{2})(\sqrt{5}-\sqrt{2})}{5-2}\)
\(=\dfrac{\sqrt{15}-\sqrt{6}-\sqrt{10}+2}{3}\)
65.0 g of ethyne gas reacts with an excess of gaseous hydrogen chloride to produce chloroethene.
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\quad \quad \text{Structural formula } \quad \quad \rule[-1ex]{0pt}{0pt}& \quad \quad\text{ Shape of molecule } \quad \quad\\
\hline
\rule{0pt}{2.5ex}\rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\rule[-1ex]{0pt}{0pt}& \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
\begin{array}{|l|c|}
\hline \rule{0pt}{2.5ex}\text{Compound} \rule[-1ex]{0pt}{0pt}& \text{ Molar mass } \\
\hline \rule{0pt}{2.5ex}\text{Ethyne} \rule[-1ex]{0pt}{0pt}& 26.04 \\
\hline \rule{0pt}{2.5ex}\text{Hydrogen chloride} \rule[-1ex]{0pt}{0pt}& 36.46 \\
\hline \rule{0pt}{2.5ex}\text{Chloroethene} \rule[-1ex]{0pt}{0pt}& 62.50 \\
\hline
\end{array}
--- 10 WORK AREA LINES (style=lined) ---
a. Structural formula:
The shape of ethyne is linear.
b. The chemical equation for the reacton occuring is shown below:
\(\ce{C2H2(g) + HCl(g) -> C2H3Cl(g)}\)
Outline why quantitative and qualitative analyses are BOTH important in determining water quality. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\ce{PCl3}\) and \(\ce{Cl2}\) were introduced to an empty sealed vessel.
\(\ce{PCl3}\) reacted with \(\ce{Cl2}\) to produce \(\ce{PCl5}\).
\(\ce{PCl3(g) + Cl2(g) \rightleftharpoons PCl5(g)}\)
Which graph best represents the changing concentration of \(\ce{Cl2}\) as the system approached the equilibrium point?
\(C\)
\(\Rightarrow C\)
A student is presented with two clear colourless solutions. One contains \(\ce{Pb^2+}\) and the other \(\ce{Na+}\) ions.
Which ion can be added to the solutions to identify the solutions?
\(A\)
\(\Rightarrow A\)
An aqueous solution of an unknown acid \(\ce{(HA)}\) is represented below.
Which row of the table best describes this solution?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|c|c|}
\hline
\rule{0pt}{2.5ex}\quad \quad \textit{Strong}\quad \quad \rule[-1ex]{0pt}{0pt}& \ \ \textit{Concentrated} \ \ \\
\hline
\rule{0pt}{2.5ex}\checkmark\rule[-1ex]{0pt}{0pt}&\checkmark\\
\hline
\rule{0pt}{2.5ex}\checkmark\rule[-1ex]{0pt}{0pt}& \large{\times}\\
\hline
\rule{0pt}{2.5ex}\large{\times}\rule[-1ex]{0pt}{0pt}& \checkmark \\
\hline
\rule{0pt}{2.5ex}\large{\times}\rule[-1ex]{0pt}{0pt}& \large{\times} \\
\hline
\end{array}
\end{align*}
\(B\)
\(\Rightarrow B\)
Consider the statement:
If \(x^2-2 x \geq 0\), then \(x \leq 0\).
Which of the following is the contrapositive of the statement?
\(A\)
\(\text{Statement: If}\ \ p\ \Rightarrow \ q\)
\(\text{Contrapositive statement: If}\ \ \neg\ q\ \Rightarrow \ \neg\ p\)
\(\therefore\ \text{If}\ \ x>0\ \ \Rightarrow\ \ x^2-2 x<0\).
\(\Rightarrow A\)
The Varroa mite is an external parasite of European honey bees and considered to be the most serious pest of honey bees worldwide.
--- 4 WORK AREA LINES (style=lined) ---
--- 9 WORK AREA LINES (style=lined) ---
a. Varroa mite infection classification
b. Procedure 1: Quarantine
Procedure 2: Surveillance and Destruction
a. Varroa mite infection classification
b. Procedure 1: Quarantine
Procedure 2: Surveillance and Destruction
--- 5 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. \(\text {Using}\ \ (\sqrt{a}-\sqrt{b})^2 \geqslant 0:\)
| \(a-2 \sqrt{a b}+b\) | \(\geqslant 0\) |
| \(a+b\) | \(\geqslant 2 \sqrt{a b}\) |
| \(\dfrac{a+b}{2}\) | \(\geqslant \sqrt{a b}\) |
ii. \(\text{Show}\ \ \dfrac{2 n+1}{2 n+2}<\dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\)
\(\text{Using part (i):}\)
\(\text{Let} \ \ a=2 n+1, b=2 n+3\)
| \(\dfrac{2 n+1+2 n+3}{2}\) | \(\geqslant \sqrt{2 n+1} \sqrt{2 n+3}\) |
| \(2 n+2\) | \(\geqslant \sqrt{2 n+1} \sqrt{2 n+3}\) |
| \(\dfrac{1}{2 n+2}\) | \(\leqslant \dfrac{1}{\sqrt{2 n+1} \sqrt{2 n+3}}\) |
| \(\dfrac{2 n+1}{2 n+2}\) | \(\leqslant \dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\) |
\(\text{Consider part (i):}\ (\sqrt{a}-\sqrt{b})^2 \geqslant 0\)
\(\Rightarrow \ \text{Equality only holds when} \ \ a=b\)
\(\text{Since}\ \ a=2 n+1 \neq b=2 n+3\)
\(\dfrac{2 n+1}{2 n+2}<\dfrac{\sqrt{2 n+1}}{\sqrt{2 n+3}}\)
Outline a process used by fungi for reproduction. (2 marks) --- 4 WORK AREA LINES (style=lined) --- Spore production (asexual reproduction): Alternative acceptable response – Budding: Spore production (asexual reproduction): Alternative acceptable response – Budding:
Outline an adaptation in a pathogen that facilitates transmission between hosts. (2 marks) --- 4 WORK AREA LINES (style=lined) --- Answers could include ONE of the following: Influenza virus: Plasmodium (malaria parasite): Bacterial spores: Answers could include ONE of the following: Influenza virus Plasmodium (malaria parasite): Bacterial spores:
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. \(\abs{2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}}=\sqrt{2^2+(-2)^2+1^2}=3\)
\({\underset{\sim}{F}}_1=\dfrac{12}{3}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)\)
\({\underset{\sim}{F}}_1=8\underset{\sim}{i}-8 \underset{\sim}{j}+4 \underset{\sim}{k}\)
ii. \({\underset{\sim}{F}}_3={\underset{\sim}{F}}_1+{\underset{\sim}{F}}_2=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)+\left(\begin{array}{c}-6 \\ 12 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\)
\({\underset{\sim}{F}}_3=2 \underset{\sim}{i}+4 \underset{\sim}{j}+8 \underset{\sim}{k}\)
iii. \({\underset{\sim}{F}}_3 \cdot d=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=2+4+16=22\)
i. \(\abs{2 \underset{\sim}{i}-2 \underset{\sim}{j}+\underset{\sim}{k}}=\sqrt{2^2+(-2)^2+1^2}=3\)
\({\underset{\sim}{F}}_1=\dfrac{12}{3}\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)\)
\({\underset{\sim}{F}}_1=8\underset{\sim}{i}-8 \underset{\sim}{j}+4 \underset{\sim}{k}\)
ii. \({\underset{\sim}{F}}_3={\underset{\sim}{F}}_1+{\underset{\sim}{F}}_2=\left(\begin{array}{c}8 \\ -8 \\ 4\end{array}\right)+\left(\begin{array}{c}-6 \\ 12 \\ 4\end{array}\right)=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\)
\({\underset{\sim}{F}}_3=2 \underset{\sim}{i}+4 \underset{\sim}{j}+8 \underset{\sim}{k}\)
iii. \({\underset{\sim}{F}}_3 \cdot d=\left(\begin{array}{l}2 \\ 4 \\ 8\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=2+4+16=22\)
A particle in simple harmonic motion has speed \(v \ \text{ms}^{-1}\), given by \(v^2=-x^2+2 x+8\) where \(x\) is the displacement from the origin in metres.
What is the amplitude of the motion?
\(B\)
\(\text{Using} \ \ v^2=n^2\left(a^2-(x-c)^2\right):\)
| \(v^2\) | \(=-x^2+2 x+8\) |
| \(=9-\left(x^2-2 x+1\right)\) | |
| \(=9-(x-1)^2\) |
\(\therefore a^2 = 9\ \ \Rightarrow\ \ a=3\)
\(\Rightarrow B\)
What are the square roots of \(3-4 i\) ?
\(C\)
\(\text{Let} \ \ z=\sqrt{3-4 i}\) :
\(z^2=3-4 i\)
\(z^2=a^2-b^2+2 a b\,i\)
\(\text{Equate real/imaginary parts:}\)
\(a^2-b^2=3\ \ldots\ (1)\)
\(2 a b=-4 \ \ \Rightarrow \ \ a b=-2\ \ldots\ (2)\)
\(\text{By inspection:}\)
\(a=2, b=-1 \ \Rightarrow \ z_1=2-i\)
\(a=-2, b=1 \ \Rightarrow \ z_2=-2+i\)
\(\Rightarrow C\)
Using integration by parts, evaluate \(\displaystyle \int_0^{\small{\dfrac{\pi}{2}}} x\, \sin x \, dx\). (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(\displaystyle \int_0^{\small{\dfrac{\pi}{2}}} x\, \sin x \, dx = 1\)
| \(u\) | \(=x\) | \(u^{\prime}\) | \(=1\) |
| \(v^{\prime}\) | \(=\sin\,x\) | \(v\) | \(=-\cos\,x\) |
| \(\displaystyle \int_0^{\small{\dfrac{\pi}{2}}} x\, \sin x \, dx\) | \(=\Big[-x\,\cos\,x\Big]_0^{\small{\dfrac{\pi}{2}}} + \displaystyle \int_0^{\small{\dfrac{\pi}{2}}} \cos x \, dx\) | |
| \(=(0-0)+\Big[\sin\,x\Big]_0^{\small{\dfrac{\pi}{2}}} \) | ||
| \(=\sin\,\dfrac{\pi}{2}-\sin\,0\) | ||
| \(=1\) |
Find \(\displaystyle \int \dfrac{5}{\sqrt{7-x^2-6 x}} \, dx\). (2 marks)
--- 5 WORK AREA LINES (style=blank) ---
\(5\,\sin^{-1} \left( \dfrac{x+3}{4} \right) +c\)
| \(\displaystyle \int \dfrac{5}{\sqrt{7-x^2-6 x}} \, dx\) | \(=\displaystyle \int \dfrac{5}{\sqrt{16-(x^2+6x+9)}} \, dx\) | |
| \(=\displaystyle \int \dfrac{5}{\sqrt{16-(x+3)^2}} \, dx\) | ||
| \(=5\,\sin^{-1} \left( \dfrac{x+3}{4} \right) +c\) |
What type of mutagen is UV light?
\(D\)
Other Options:
Amoeba reproduce by the process shown.
Which of the following is a characteristic of the daughter cells?
\(B\)
Other Options:
The complex number \(z\) is given by \(x+i y\).
Find, in Cartesian form:
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. \(z^2=x^2-y^2+2xy\,i\)
ii. \(\dfrac{1}{z}=\dfrac{x}{x^2-y^2}-\dfrac{y}{x^2-y^2}\,i\)
| i. | \(z^{2}\) | \(=(x+iy)^2\) |
| \(=x^2-y^2+2xy\,i\) |
| ii. | \(\dfrac{1}{z}\) | \(=\dfrac{1}{x+iy}\) |
| \(=\dfrac{x-iy}{(x+iy)(x-iy)}\) | ||
| \(=\dfrac{x-iy}{x^2+y^2}\) | ||
| \(=\dfrac{x}{x^2+y^2}-\dfrac{y}{x^2+y^2}\,i\) |
The complex numbers \(w\) and \(z\) are given by \(w=2 e^{\small{\dfrac{i \pi}{6}}}\) and \(z=3 e^{\small{\dfrac{i \pi}{6}}}\). Find the modulus and argument of \(w z\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\text{Modulus = 6, Argument}\ = \dfrac{\pi}{3} \)
\(w=2 e^{\small{\dfrac{i \pi}{6}}}, \ \ z=3 e^{\small{\dfrac{i \pi}{6}}}\)
\(wz=2 e^{\small{\dfrac{i \pi}{6}}} \times 3 e^{\small{\dfrac{i \pi}{6}}} = 6 e^{\small{\dfrac{i \pi}{3}}}\)
\(\text{Modulus = 6, Argument}\ = \dfrac{\pi}{3} \)
Consider the statement:
\(\exists\, x \in Z\), such that \(x^2\) is odd.
Which of the following is the negation of the statement?
\(B\)
\(x^2\ \text{is odd is negated by}\ x^2\ \text{is even.}\)
\(\therefore\ \text{Negation of statement:}\ \forall\, x \in Z , x^2\ \text{is even}\)
\(\Rightarrow B\)
A researcher is using the statistical investigation process to investigate a possible relationship between average number of minutes per day a person spends watching television, and the average number of minutes per day the person spends exercising.
--- 3 WORK AREA LINES (style=lined) ---
Participants were asked to record the number of minutes they spent watching television each day and the number of minutes they spent exercising each day. The averages for each participant were recorded and graphed, and a line of best fit was included.
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. \(\text{How does the average daily time spent watching television}\)
\(\text{relate to the average daily time spent exercising?}\)
b. \(\text{Dependent variable: Average minutes per day exercising, or }y.\)
c. \(\text{Form: Linear}\)
\(\text{Direction: Negative}\)
d. \(\text{Gradient}=-1\)
e. \(\text{The extrapolation of the graph past 70 minutes produces}\)
\(\text{negative average minutes per day exercising (impossible).}\)
a. \(\text{How does the average daily time spent watching television}\)
\(\text{relate to the average daily time spent exercising?}\)
b. \(\text{Dependent variable:}\)
\(\text{Average minutes per day exercising, or }y.\)
c. \(\text{Form: Linear}\)
\(\text{Direction: Negative}\)
d.
\(y-\text{intercept = 70}\)
\(\text{Gradient}=\dfrac{\text{rise}}{\text{run}}=\dfrac{-60}{60}=-1\)
e. \(\text{The extrapolation of the graph past 70 minutes produces}\)
\(\text{negative average minutes per day exercising (impossible).}\)
The time, in minutes, it takes to travel by road between six towns is recorded and shown in the network diagram below.
--- 3 WORK AREA LINES (style=lined) ---
New roads are built to connect a town \(G\) to towns \(A\) and \(D\). The table gives the times it takes to travel by the new roads.
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \textit{Town} \rule[-1ex]{0pt}{0pt} & \textit{Time} \text{(minutes)} \rule[-1ex]{0pt}{0pt} & \textit{Town} \\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & 8 \rule[-1ex]{0pt}{0pt} & G \\
\hline
\rule{0pt}{2.5ex} G \rule[-1ex]{0pt}{0pt} & 22 \rule[-1ex]{0pt}{0pt} & D \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \(\text{Minimum travel time}\ = 15+20+10+5+8=58\ \text{minutes}\)
\(\text{Path: }A → B → C → D → E → F\)
b. \(\text{New roads}\ A → G\ \text{and }G → D \)
c. \(\text{Using the new roads }A → G\ \text{and }G → D:\)
\(\text{Minimum travel time}\ =8+22+5+8=43\ \text{minutes.}\)
\(\text{Therefore the original path is no longer the shortest path.}\)
a. \(\text{Minimum travel time}\ = 15+20+10+5+8=58\ \text{minutes}\)
\(\text{Path: }A → B → C → D → E → F\)
b. \(\text{New roads}\ A → G\ \text{and }G → D \)
c. \(\text{Using the new roads }A → G\ \text{and }G → D:\)
\(\text{Minimum travel time}\ =8+22+5+8=43\ \text{minutes.}\)
\(\text{Therefore the original path is no longer the shortest path.}\)
What is \(6\ 280\ 000\) in standard form?
\(C\)
\(6\ 280\ 000=6.28\times 10^6\)
\(\Rightarrow C\)
Mario drives from his home to his friend’s house. He watches a movie at his friend’s house and then drives home.
Which distance−time graph best represents Mario’s complete journey?
\(B\)
\(\text{Mario’s trip starts at home (zero) and ends at home (zero).}\)
\(\Rightarrow B\)
Which of the following could be classified as discrete data?
\(D\)
\(\text{Discrete data refers to individual and countable items that can be listed.}\)
\(\Rightarrow D\)
A toy has a curved surface on the top which has been shaded as shown. The toy has a uniform cross-section and a rectangular base.
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. \(34.68 \ \text{cm}^2\)
b. \(582.64 \ \text{cm}^2\)
c. \(0.490 \%\)
a. \(\begin{array}{|c|c|c|c|}
\hline\rule{0pt}{2.5ex} \quad x \quad \rule[-1ex]{0pt}{0pt}& \quad 0 \quad & \quad 5.1 \quad & \quad 10.2 \quad\\
\hline \rule{0pt}{2.5ex}y \rule[-1ex]{0pt}{0pt}& 6 & 3.8 & 0 \\
\hline
\end{array}\)
| \(A\) | \(\approx \dfrac{h}{2}\left(y_0+2y_1+y_2\right)\) |
| \(\approx \dfrac{5.1}{2}\left(6+2 \times 3.8+0\right)\) | |
| \(\approx 34.68 \ \text{cm}^2\) |
b. \(\text{Toy has 5 sides.}\)
\(\text{Area of base}=10.2 \times 40=408 \ \text{cm}^2\)
\(\text{Area of rectangle}=6.0 \times 40=240 \ \text{cm}^2\)
\(\text{Approximated areas}=2 \times 34.68=69.36 \ \text{cm}^2\)
| \(\therefore \ \text{Area of curved surface}\) | \(=1300-(408+240+69.36)\) |
| \(=582.64 \ \text{cm}^2\) |
c. \(\text{Convert cm to mm:}\)
\(10.2 \ \text{cm}\times 10=102 \ \text{mm}\)
\(\text{Absolute error}=\dfrac{1}{2} \times \text{precision}=0.5 \ \text{mm}\)
\(\% \ \text{error}=\dfrac{0.5}{102} \times 100=0.490 \%\)
--- 5 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
i. \(\displaystyle \binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}\ \ldots\ (1)\)
\(\text{Show:}\ \displaystyle \binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
\(\text{Substitute} \ \ n=m+1 \ \ \text{and} \ \ r=R+1 \text{ into (1):}\)
\(\displaystyle\binom{m+1}{R+1}=\binom{m}{R}+\binom{m}{R+1}\)
\(\displaystyle\binom{m}{R}=\binom{m+1}{R+1}-\binom{m}{R+1}\)
ii. \(\text{Prove} \ \ \displaystyle \binom{2000}{2000}+\binom{2001}{2000}+\binom{2002}{2000}+\cdots+\binom{2050}{2000}=\binom{2051}{2001}\)
\(\text{Using part (i)}:\)
| \(\operatorname{LHS}\) | \(=1+\displaystyle \left[\binom{2002}{2001}-\binom{2001}{2001}\right]+\left[\binom{2003}{2001}-\binom{2002}{2001}\right]+\ldots\) |
| \(\quad \quad \quad +\displaystyle \left[\binom{2050}{2001}-\binom{2049}{2001}\right]+\left[\binom{2051}{2001}-\binom{2050}{2001}\right]\) | |
| \(=1-1+\displaystyle \binom{2051}{2001}\) | |
| \(=\displaystyle \binom{2051}{2001}\) |
The roots of \(2 x^3+6 x^2+x-1=0\) are \(\alpha, \beta\) and \(\gamma\).
What is the value of \(\dfrac{1}{\alpha \beta}+\dfrac{1}{\alpha \gamma}+\dfrac{1}{\beta \gamma}\) ? (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{1}{\alpha \beta} + \dfrac{1}{\alpha \gamma}+\dfrac{1}{\beta \gamma}=-6\)
\(2 x^3+6 x^2+x-1=0\)
\(\dfrac{1}{\alpha \beta}+\dfrac{1}{\alpha \gamma}+\dfrac{1}{\beta \gamma}=\dfrac{\alpha+\beta+\gamma}{\alpha \beta \gamma}\)
\(\alpha+\beta+\gamma=-\dfrac{b}{a}=-3\)
\(\alpha \beta \gamma=-\dfrac{d}{a}=\dfrac{1}{2}\)
\(\therefore \dfrac{1}{\alpha \beta} + \dfrac{1}{\alpha \gamma}+\dfrac{1}{\beta \gamma}=\dfrac{-3}{\frac{1}{2}}=-6\)
For what value of \(m\) is the vector \(\displaystyle \binom{1}{m}\) parallel to the vector \(\displaystyle \binom{2}{6}\)? (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
\(m=3\)
\(\text{If vectors are parallel:}\)
\(\displaystyle \binom{2}{6}=k\binom{1}{m} \ \Rightarrow \ k=2\)
| \(2m\) | \(=6\) |
| \(m\) | \(=3\) |
Solve \(\sin 2 \theta-\sin \theta=0\) for \(0 \leq \theta \leq \pi\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\theta=0, \dfrac{\pi}{3}\ \text{or}\ \pi\)
| \(\sin\,2\theta-\sin\,\theta\) | \(=0\) | |
| \(2\,\sin\,\theta\,\cos\,\theta-\sin\,\theta\) | \(=0\) | |
| \(\sin\,\theta(2\,\cos\,\theta-1)\) | \(=0\) |
\(\sin\,\theta=0\ \ \Rightarrow\ \ \theta=0, \pi\)
\(2\,\cos\,\theta-1=0\ \ \Rightarrow\ \ \cos\,\theta=\dfrac{1}{2}\ \ \Rightarrow\ \ \theta=\dfrac{\pi}{3}\)
\(\therefore \theta=0, \dfrac{\pi}{3}\ \text{or}\ \pi.\)
Find the inverse function, \(f^{-1}(x)\), of the function \(f(x)=1-\dfrac{1}{x-2}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(f^{-1} (x) = 2 + \dfrac{1}{1-x}\)
\(y=1-\dfrac{1}{x-2}\)
\(\text{Inverse: swap}\ x ↔ y\)
| \(x\) | \(=1-\dfrac{1}{y-2}\) | |
| \(\dfrac{1}{y-2}\) | \(=1-x\) | |
| \(y-2\) | \(=\dfrac{1}{1-x}\) | |
| \(y\) | \(=2+\dfrac{1}{1-x}\) |
The projection of \(\underset{\sim}{u}\) onto \(\underset{\sim}{v}\) is given by \(\left(\dfrac{\underset{\sim}{u} \cdot \underset{\sim}{v}}{|\underset{\sim}{v}|^2}\right) \underset{\sim}{v}\).
What is the projection of \(\underset{\sim}{u}=\underset{\sim}{i}+2 \underset{\sim}{j}\) onto \(\underset{\sim}{v}=2 \underset{\sim}{i}-3 \underset{\sim}{j}\) ?
\(B\)
\(\underset{\sim}{u}=\displaystyle\binom{1}{2},|\underset{\sim}{u}|=\sqrt{1^2+2^2}=\sqrt{5}\)
\(\underset{\sim}{v}=\displaystyle \binom{2}{-3},|\underset{\sim}{v}|=\sqrt{2^2+(-3)^2}=\sqrt{13}\)
| \(\operatorname{proj}_{\underset{\sim}{v}}{\underset{\sim}{u}}\) | \(=\dfrac{\underset{\sim}{u} \cdot \underset{\sim}{v}}{|\underset{\sim}{v}|^2} \times \underset{\sim}{v}\) |
| \(=\dfrac{2-6}{13}(\underset{\sim}{2i}-3\underset{\sim}{j})\) | |
| \(=-\dfrac{4}{13}(\underset{\sim}{2i}-3\underset{\sim}{j})\) |
\(\Rightarrow B\)