`A` and `B` are events of a sample space `S.`
`text(Pr)(A nn B) = 2/5` and `text(Pr)(A nn B prime) = 3/7`
`text(Pr)(B prime | A)` is equal to
- `6/35`
- `15/29`
- `14/35`
- `29/35`
- `2/3`
Aussie Maths & Science Teachers: Save your time with SmarterEd
`A` and `B` are events of a sample space `S.`
`text(Pr)(A nn B) = 2/5` and `text(Pr)(A nn B prime) = 3/7`
`text(Pr)(B prime | A)` is equal to
`B`
The weights of bags of flour are normally distributed with mean 252 g and standard deviation 12 g. The manufacturer says that 40% of bags weigh more than `x` g.
The maximum possible value of `x` is closest to
`E`
The average value of the function `f: [0, 2 pi] -> R,\ f(x) = sin^2(x)` over the interval `[0, a]` is 0.4.
The value of `a`, to three decimal places, is
`C`
`1/(a – 0) int_0^a(sin^2x)\ dx` | `= 0.4` |
`[x- (sin 2x)/2]_0^a` | `=0.4a` |
`a-(sin 2a)/2` | `=0.4a` |
`:. a` | `= 1.298, quad a∈ (0, 2pi)` |
`=> C`
The normal to the graph of `y = sqrt (b - x^2)` has a gradient of 3 when `x = 1.`
The value of `b` is
A. `-10/9`
B. `10/9`
C. `4`
D. `10`
E. `11`
`D`
`y` | `=sqrt (b – x^2)` |
`dy/dx` | `=(-2x)/(2 sqrt(b-x^2))` |
`text(When)\ \ x=1,`
`dy/dx` | `=(-1)/sqrt(b-1)` |
`text(S)text(ince)\ \ m_(norm) xx m_(tan) = -1,`
`dy/dx=- 1/3`
`(-1)/sqrt(b-1)` | `=- 1/3` |
`sqrt(b-1)` | `=3` |
`b-1` | `=9` |
`b` | `=10` |
`=> D`
The adult membership fee for a cricket club is $150.
Junior members are offered a discount of $30 off the adult membership fee.
Adult members of the cricket club pay $15 per match in addition to the membership fee of $150.
If a member does not pay the membership fee by the due date, the club will charge simple interest at the rate of 5% per month until the fee is paid.
Michael paid the $150 membership fee exactly two months after the due date.
The cricket club received a statement of the transactions in its savings account for the month of January 2014.
The statement is shown below.
What is the annual rate of interest for this account?
Write your answer, correct to one decimal place. (1 mark)
a. `text(Discount for junior members)`
`= 30/150 xx 100text(%)`
`= 20text(%)`
b. | `text(Match Payments)` | `= 12 xx 15=$180` |
`:.\ text(Total paid to the club)`
`= 150 + 180`
`= $330`
c. | `I` | `= (PrT)/100` |
`= (150 xx 5 xx 2)/100` | ||
`= $15` |
d.i. `text(Withdrawal on 17-Jan)`
`= 59\ 700 – 42\ 700`
`= $17\ 000`
d.ii. `text(Minimum Jan balance) = $42\ 700`
`47\ 200 xx r xx 1/12` | `= 125.12` |
`:. r` | `= (125.12 xx 12)/(42\ 700)` |
`= 0.0351…` |
`:.\ text(Annual interest rate) = 3.5text(%)`
The temperature, `T^@C`, inside a building `t` hours after midnight is given by the function
`f: [0, 24] -> R,\ T(t) = 22 - 10\ cos (pi/12 (t - 2))`
The average temperature inside the building between 2 am and 2 pm is
`D`
`text(Period) = (2pi)/n = (2pi)/(pi/12) = 24`
`text(At 2 am,)\ \ t=2,`
`T(2) = 22 – 10\ cos (0) = 12`
`text(At 2 pm,)\ \ t=14,`
`T(14) = 22 – 10\ cos (pi) = 32`
`text(Symmetry of graph means the average)`
`text(temperature occurs at)\ \ t=8:`
`T(8) = 22 – 10\ cos ((pi)/2) = 22`
`=> D`
Let the rule for a function `g` be `g (x) = log_e ((x - 2)^2).` For the function `g`, the
`B`
The volume of a sphere is given by `V = 4/3 pi r^3` where `r` is the radius of the sphere.
If the volume of a sphere is `220\ text(cm)^3`, find the radius, to 1 decimal place. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3.7\ \ text{cm (to 1 d.p.)}`
`V` | `= 4/3 pi r^3` |
`3V` | `= 4 pi r^3` |
`r^3` | `= (3V)/(4 pi)` |
`text(When)\ \ V = 220`
`r^3` | `= (3 xx 220)/(4 pi)` |
`= 52.521…` | |
`:. r` | `=root3 (52.521…)` |
`= 3.744…\ \ \ text{(by calc)}` | |
`= 3.7\ \ text{cm (to 1 d.p.)}` |
If the equation `f(2x) - 2f(x) = 0` is true for all real values of `x`, then the rule for `f` could be
`C`
`text(We need)\ \ f(2x)=2\ f(x),`
`text(Consider)\ C,`
`f(x)` | `=2x,` |
`f(2x)` | `= 2(2x)` |
`= 2\ f(x)` |
`text(CAS can be used to quickly prove other answers)`
`text(do not satisfy equation.)`
`=> C`
Harry is a soccer player who practises penalty kicks many times each day.
Each time Harry takes a penalty kick, the probability that he scores a goal is 0.7, independent of any other penalty kick.
One day Harry took 20 penalty kicks.
Given that he scored at least 12 goals, the probability that Harry scored exactly 15 goals is closest to
A. `0.1789`
B. `0.8867`
C. `0.8`
D. `0.6396`
E. `0.2017`
`E`
`text(Let)\ \ X =\ text(number of goals,)`
`X ∼\ text(Bi)(20, 0.7)`
`text(Pr) (X = 15 | X >= 12)`
`= (text(Pr) (X = 15))/(text(Pr) (X >= 12))`
`~~ 0.2017`
`=> E`
For the function `f(x) = sin (2 pi x) + 2x,` the average rate of change for `f(x)` with respect to `x` over the interval `[1/4, 5]` is
A. `0`
B. `34/19`
C. `7/2`
D. `(2 pi + 10)/4`
E. `23/4`
`B`
`text(Average rate of change for)\ \f(x)\ \ text(over)\ \ [1/4, 5]`
`= (f(5) – f(1/4))/(5 – 1/4)` |
`= (sin (10 pi) + 10 – (sin\ pi/2 +1/2))/(19/4)` |
`= 34/19` |
`=> B`
If `x + a` is a factor of `7x^3 + 9x^2 - 5ax`, where `a in R text(\){0}`, then the value of `a` is
A. `-4`
B. `-2`
C. `-1`
D. `1`
E. `2`
`E`
`text(S)text(ince)\ \ x+a\ \ text(is a factor),\ \ f(-a)=0`
`7(-a)^3 + 9(-a)^2 – 5a(-a) = 0,`
`-7a^3 + 14a^2` | `=0` |
`-7a^2 (a – 2)` | `=0` |
`:. a = 2,` | `\ \ \ a!=0` |
`=> E`
The midpoint of the line segment that joins `text{(1, −5)}` to `(d, 2)` is
`A`
`text(Midpoint)` | `= ((d + 1)/2, (2 + (-5))/2)` |
`= ((d + 1)/2, -3/2)` |
`=> A`
Let `n` be a positive integer.
(i) `text(By De Moivre)`
`(cos alpha + i sin alpha)^(2n)=cos (2n alpha) + i sin (2n alpha)`
`text(By the Binomial Theorem)`
`(cos alpha + i sin alpha)^(2n)`
`=cos^(2n) alpha + ((2n), (1)) cos^(2n – 1) alpha (i sin alpha) + ((2n), (2)) cos^(2n – 2) alpha (isin alpha)^2 +`
`… ((2n), (2n – 2)) cos^2 alpha (isin alpha)^(2n-2) + ((2n), (2n – 1)) cos alpha (i sin alpha)^(2n-1) + (i sin alpha)^(2n)`
`text(Equating real parts,)`
`cos(2n alpha) = cos^(2n) alpha – ((2n), (2)) cos^(2n – 2) alpha sin^2 alpha + … `
`+ (-1)^(n – 1) ((2n), (2n – 2)) cos^2 alpha sin^(2n – 2) alpha + (-1)^n sin^(2n) alpha`
(ii) `T_(2n) (x) = cos (2n cos^-1 x)\ \ text(for)\ \ -1 <= x <= 1`
`text(Given)\ \ alpha = cos^-1 x,\ \ =>x = cos alpha`
`text(Substituting)\ \ x = cos alpha\ \ text{into part (i),}`
`cos (2n cos^-1 x)`
`= x^(2n) – ((2n), (2)) x^(2n – 2) (1 – cos^2 alpha) + ((2n), (4)) x^(2n – 4) (1 – cos^2 alpha)^2 +`
`… + (-1)^n (1 – cos^2 alpha)^n`
`:. T_(2n) (x) = x^(2n) – ((2n), (2)) x^(2n – 2) (1 – x^2) + ((2n), (4)) x^(2n – 4)(1 – x^2)^2 +`
`… + (-1)^n (1 – x^2)^n`
(iii) `T_(2n) (x) = 0\ \ text(when)`
`cos (2n cos^-1 x)` | `=0` |
`2n cos^-1 x` | `=pi/2, (3 pi)/2, (5 pi)/2, … , ((2k + 1) pi)/2,\ \ k = 0, 1, 2 … , (2n – 1)` |
`cos^-1 x` | `= ((2k + 1) pi)/(4n),\ \ k = 0, 1, 2 …, (2n – 1)` |
`:. x` | `= cos(pi/(4n)), cos((3 pi)/(4n)), … , cos((4n – 1) pi)/(4n)` |
`=>T_(2n) (x) = 0\ \ text(has degree)\ \ 2n`
`=>T_(2n) (x) = 0\ \ text(has)\ \ 2n\ \ text(distinct roots)`
`:.\ text(Product of roots of)\ \ T_(2n) (x) = 0\ \ text(is the constant term)`
`text(divided by the coefficient of)\ \ x^(2n).`
`text(Constant term is)\ \ T_(2n) (0)=(-1)^n`
`text(Coefficient of)\ \ x^(2n)\ \ text(is)\ \ (1 + ((2n), (2)) + ((2n), (4)) + … + 1)`
`:.cos(pi/(4n)) cos((3 pi)/(4n)) cos ((5 pi)/(4n)) …\ cos(((4n – 1) pi)/(4n))`
`=((-1)^n)/((1 + ((2n), (2)) + ((2n), (4)) + … + 1))`
`text(*The denominator can be further simplified to)\ \ 2^(2n-1)\ \ text(by)`
`text(using the binomial expansion of)\ \ (1+x)^(2n)`
(iv) `cos(2n cos^-1 x)= cos ((n pi)/2)\ \ text(when)`
`cos^-1 x=pi/4\ \ \ =>x=1/sqrt2`
`text{Using part (ii)}`
`cos((n pi)/2)` | `=(1/sqrt 2)^(2n) – ((2n), (2)) (1/sqrt 2)^(2n – 2) (1/2) +` |
`((2n), (4)) (1/sqrt 2)^(2n – 4) (1/2)^2 – … + (-1)^n (1/2)^n` | |
` = 1/2^n – ((2n), (2)) 1/2^(n-2) 1/2^2 + ((2n), (4)) 1/2^(n-4) 1/2^4 – … + (-1)^n 1/2^n` | |
`=1/2^n – ((2n), (2)) 1/2^n + ((2n), (4)) 1/2^n – … + (-1)^n 1/2^n` | |
`:.2^n cos ((n pi)/2)` | `=1 – ((2n), (2)) + ((2n), (4)) – ((2n), (6)) + … + (-1)^n` |
(i) `text(Arrangements of 5 black counters in 15 cells)`
`=\ ^15C_5`
`text(In each column, there are 3 cells to place a black counter.)`
`:.\ text(Ways to place a black counter in each column)`
`\ =3^5=243`
`:.P text{(1 black counter in each column)`
`=243/(\ ^15C_5`
`=81/1001`
(ii) `text{Similarly to part (i),}`
`text(Arrangements of)\ \ q\ \ text(black counters in)\ \ nq\ \ text(cells)`
`=\ ^(nq)C_q`
`text(In each column, there are)\ \ n\ \ text(cells to place a black counter.)`
`:.\ text(Ways to place a black counter in each of)\ \ q\ \ text(columns)`
`\ =n^q`
`:.P text{(1 black counter in each column)`
`=n^q/(\ ^(nq)C_q)`
(iii) | `lim_(n -> oo) P_n` | `= lim_(n -> oo) n^q/(\ ^(nq)C_q)` |
`= lim_(n -> oo)[n^q xx (q!)/((nq)(nq – 1)…(nq – q + 1))]` | ||
`= lim_(n -> oo)[(n^q q!)/(n^q q(q – 1/n)(q – 2/n) … (q – (q – 1)/n))]` | ||
`= lim_(n -> oo)[(q!)/(q(q – 1/n)(q – 2/n) … (q – (q – 1)/n))]` | ||
`= (q!)/q^q` |
For positive real numbers `x` and `y`, `sqrt (xy) <= (x + y)/2`. (Do NOT prove this.)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(S)text(ince)\ \ (x – y)^2 = x^2 + y^2 – 2xy`
`and \ (x – y)^2 >= 0`
`0` | `≤x^2 + y^2 – 2xy` |
`2xy` | `≤x^2 + y^2` |
`:.sqrt (xy)` | `≤sqrt ((x^2 + y^2)/2)` |
ii. `sqrt(ab) <= sqrt((a^2 + b^2)/2),\ \ \ \ text{(part (i))}`
`sqrt(cd) <= sqrt((c^2 + d^2)/2),\ \ \ \ text{(part (i))}`
`sqrt(ab) sqrt(cd)` | `<=sqrt((a^2 + b^2)/2)*sqrt((c^2 + d^2)/2)` |
`<=sqrt(((a^2 + b^2)/2) * ((c^2 + d^2)/2))` | |
`sqrt (xy) <= (x + y)/2\ \ \ \ text{(given):}` | |
`sqrt(ab) sqrt(cd)` | `<=1/2((a^2 + b^2+c^2+d^2)/2)` |
`sqrt(abcd)` | `<=(a^2 + b^2+c^2+d^2)/4` |
`:.root4(abcd)` | `<=sqrt((a^2 + b^2+c^2+d^2)/4)` |
Suppose that `x >= 0` and `n` is a positive integer.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. | `1-x^2` | `<=1\ \ \ text(for)\ x>=0` |
`(1-x)(1+x)` | `<=1` | |
`(1-x)` | `<=1/(1+x)` |
`text(S)text(ince)\ \ 1 + x >= 1\ \ text(when)\ \ x >= 0`
`=>1/(1 + x) <= 1`
`:. 1 – x <= 1/(1 + x) <= 1.`
ii. | `int_0^(1/n) (1 – x)\ dx` | `<= int_0^(1/n) (dx)/(1 + x) <= int_0^(1/n) 1\ dx` |
`[x – x^2/2]_0^(1/n)` | `<= [ln (1 + x)]_0^(1/n) <= [x]_0^(1/n)` | |
`1/n-1/(2n^2)` | `<= ln (1 + 1/n) <= 1/n` | |
`1 – 1/(2n) ` | `<= n ln (1 + 1/n) <= 1,\ \ \ \ \ (n>=1)` |
iii. | `lim_(n -> oo) (1 – 1/(2n))` | `<= lim_(n -> oo){n ln (1 + 1/n)} <= lim_(n -> oo) (1)` |
`1` | `<= lim_(n -> oo) {l ln (1 + 1/n)} <= 1` |
`:. lim_(n -> oo) (n ln (1 + 1/n))` | `=1` |
`lim_(n -> oo) ln (1 + 1/n)^n` | `=1` |
`:.lim_(n -> oo) (1 + 1/n)^n` | `=e` |
A particle `A` of unit mass travels horizontally through a viscous medium. When `t = 0`, the particle is at point `O` with initial speed `u`. The resistance on particle `A` due to the medium is `kv^2`, where `v` is the velocity of the particle at time `t` and `k` is a positive constant.
When `t = 0`, a second particle `B` of equal mass is projected vertically upwards from `O` with the same initial speed `u` through the same medium. It experiences both a gravitational force and a resistance due to the medium. The resistance on particle `B` is `kw^2`, where `w` is the velocity of the particle `B` at time `t`. The acceleration due to gravity is `g`.
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Particle)\ A:`
`ddot x` | `= -kv^2` |
`(dv)/(dt)` | `= -kv^2` |
`(dt)/(dv)` | `=- 1/(kv^2)` |
`t` | `= -1/k int 1/v^2\ dv` |
`-kt` | `= -1/v + c` |
`text(When)\ \ t=0,\ \ v=u\ \ \ \ =>c=1/u` | |
`-kt` | `= -1/v + 1/u` |
`:.1/v` | `= kt + 1/u` |
ii. `text(Particle)\ B:`
`ddot x` | `= -g – kw^2` |
`(dw)/(dt)` | `= -g – kw^2` |
`(dt)/(dw)` | `=-1/(g + kw^2)` |
`t` | `= – int (dw)/(g + kw^2)` |
`= -1/k int (dw)/(g/k + w^2)` | |
`= -1/k xx 1/sqrt (g/k) tan^-1(w/sqrt (g/k)) + c` | |
`= -1/sqrt (gk)\ tan^-1 ((sqrt k w)/sqrt g) + c` |
`text(When)\ \ t = 0,\ \ w = u`
`=>c= 1/sqrt (gk) tan^-1 ((sqrt k u)/sqrt g)`
`:. t` | `= -1/sqrt (gk) tan^-1 ((sqrt k w)/sqrt g) + 1/sqrt (gk) tan^-1 ((sqrt k u)/sqrt g)` |
`=1/sqrt (gk) (tan^-1 (u sqrt(k/g)) – 1/sqrt (gk) tan^-1 (w sqrt (k/g)))` |
iii. `B\ \ text(at rest when)\ \ w = 0`
`t = 1/sqrt (gk) (tan^-1 (u sqrt (k/g)))`
`:.1/V` | `= k xx 1/sqrt(gk) tan^-1 (u sqrt (k/g)) + 1/u,\ \ \ \ \ text{(part (i))}` |
`= 1/u + sqrt(k/g) tan^-1 (u sqrt (k/g))` |
iv. `1/V = 1/u + sqrt (k/g) tan^-1 (u sqrt (k/g))`
`text(As)\ \ u -> oo,\ \ tan^-1 (u sqrt (k/g)) -> pi/2`
`:.\ text(If)\ \ u\ \ text(is very large,)`
`1/V` | `~~ 0 + sqrt (k/g) xx pi/2` |
`:.V` | `~~ 2/pi sqrt (g/k)` |
A car of mass `m` is driven at speed `v` around a circular track of radius `r`. The track is banked at a constant angle `theta` to the horizontal, where `0 < theta < pi/2`. At the speed `v` there is a tendency for the car to slide up the track. This is opposed by a frictional force `mu N`, where `N` is the normal reaction between the car and the track, and `mu > 0`. The acceleration due to gravity is `g`.
Using the result from part (i), or otherwise, show that `mu < 1.` (2 marks)
(i) |
`text(Resolving the forces vertically)`
`N cos theta` | `= mg + mu N sin theta` |
`N (cos theta – mu sin theta)` | `= mg\ \ \ …\ (1)` |
`text(Resolving the forces horizontally)`
`N sin theta + mu N cos theta` | `=(m v^2)/r` |
`N (sin theta + mu cos theta)` | `=(m v^2)/r\ \ \ …\ (2)` |
`text(Divide)\ \ (2)÷(1)`
`((m v^2)/r)/(mg)` | `=(sin theta + mu cos theta)/(cos theta – mu sin theta)` |
`v^2/(rg)` | `=(sin theta + mu cos theta)/(cos theta – mu sin theta)` |
`v^2` | `=rg ((sin theta + mu cos theta)/(cos theta – mu sin theta))` |
`= rg ((tan theta + mu)/(1 – mu tan theta))` |
(ii) `text(Given that)\ \ V^2=rg`
`=> (tan theta + mu)/(1 – mu tan theta)=1`
`(tan theta + mu)` | `=(1 – mu tan theta)` |
`mu(1+ tan theta)` | `=1-tan theta` |
`mu` | `=(1-tan theta)/(1+ tan theta)` |
`=1- (2tan theta)/(1+ tan theta)` |
`text(S)text(ince)\ \ tan theta>0\ \ text(for)\ \ 0<theta<pi/2`
`=> (2tan theta)/(1+ tan theta) >0`
`:. mu<1`
The cubic equation `x^3 – px + q = 0` has roots `alpha, beta` and `gamma`.
It is given that `alpha^2 + beta^2 + gamma^2 = 16` and `a^3 + beta^3 + gamma^3 = -9`.
(i) `alpha + beta + gamma = – b/a=0`
`alpha beta + beta gamma + gamma alpha = c/a= -p`
`(alpha + beta + gamma)^2` | `= alpha^2 + beta^2 + gamma^2 + 2(alpha beta + beta gamma + gamma alpha)` |
`0` | `= 16 – 2p` |
`:. p` | `= 8` |
(ii) | `alpha^3 – 8 alpha + q` | `=0\ \ \ …\ (1)` |
`beta^3 – 8 beta + q` | `=0\ \ \ …\ (2)` | |
`gamma^3 – 8 gamma + q` | `=0\ \ \ …\ (3)` |
`(1)+(2)+(3)`
`(alpha^3 + beta^3 + gamma^3) – 8(alpha + beta + gamma) + 3q = 0`
`-9 – 0 + 3q` | `=0` |
`q` | `=3` |
(iii) | `alpha(alpha^3 – 8 alpha + 3)` | `=0\ \ \ …\ (1)` |
`beta(beta^3 – 8 beta + 3)` | `=0\ \ \ …\ (2)` | |
`gamma(gamma^3 – 8 gamma + 3)` | `=0\ \ \ …\ (3)` |
`(1)+(2)+(3)`
`alpha^4 + beta^4 + gamma^4 – 8(alpha^2 + beta^2 + gamma^2) + 3(alpha + beta + gamma) = 0`
`alpha^4 + beta^4 + gamma^4` | `= 8 xx 16 – 0` |
`= 128` |
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `d/(d theta) (sin^(n – 1) theta cos theta)`
`=(n – 1) sin^(n – 2) theta cos theta cos theta + sin^(n – 1) theta xx (-sin theta)`
`=(n – 1) sin^(n – 2) theta cos^2 theta – sin^n theta`
`=(n – 1) sin^(n – 2) theta (1 – sin^2 theta) – sin^n theta`
`=(n – 1) sin^(n – 2) theta – (n – 1) sin^n theta – sin^n theta`
`=(n – 1) sin^(n – 2) theta – n sin^n theta`
ii. `text{From part (i)}`
`n sin^n theta = (n – 1) sin^(n – 2) theta – d/(d theta) (sin^(n – 1) theta cos theta)`
`:. int_0^(pi/2) sin^n theta\ d theta`
`=1/n int_0^(pi/2) ((n – 1) sin^(n – 2) theta – d/(d theta) (sin^(n – 1) theta cos theta)) d theta`
`=1/n int_0^(pi/2) (n – 1) sin^(n – 2) theta\ d theta – 1/n int_0^(pi/2) d/(d theta) (sin^(n – 1) theta cos theta)\ d theta`
`= 1/n int_0^(pi/2) (n – 1) sin^(n – 2) theta\ d theta – 1/n int_0^(pi/2) d/(d theta) (sin^(n – 1) theta cos theta)\ d theta`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta – 1/n [sin^(n – 1) theta cos theta]_0^(pi/2)`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta – 1/n (0 – 0)`
`= (n – 1)/n int_0^(pi/2) sin^(n – 2) theta\ d theta,\ \ \ \ (n>1)`
iii. | `int_0^(pi/2) sin^4 theta\ d theta` | `= 3/4 int_0^(pi/2) sin^2 theta\ d theta` |
`= 3/4 xx [(2-1)/2 int_0^(pi/2) d theta]` | ||
`= 3/8 xx [theta]_0^(pi/2)` | ||
`= (3 pi)/16` |
A small spherical balloon is released and rises into the air. At time `t` seconds, it has radius `r` cm, surface area `S = 4 pi r^2` and volume `V = 4/3 pi r^3`.
As the balloon rises it expands, causing its surface area to increase at a rate of `((4 pi)/3)^(1/3)\ \text(cm)^2 text(s)^-1`. As the balloon expands it maintains a spherical shape.
(i) | `(dS)/(dt)` | `= (dS)/(dr) xx (dr)/(dt)` |
`((4 pi)/3)^(1/3)` | `=8 pi r xx (dr)/(dt)` | |
`(dr)/(dt)` | `=((4 pi)/3)^(1/3) xx 1/(8 pi r)` | |
`=1/(8 pi r) (4/3 pi)^(1/3)` |
(ii) `(dV)/(dt) = (dV)/(dr) xx (dr)/(dt)`
`(dV)/(dt) =` | `4 pi r^2 xx ((4 pi)/3)^(1/3) xx 1/(8 pi r)` |
`=` | `r/2 xx ((4 pi)/3)^(1/3)` |
`=` | `1/2 (4/3 pi r^3)^(1/3)` |
`=` | `1/2 V^(1/3)` |
(iii) `text(Find)\ \ t\ \ text(when)\ \ V=64\ 000`
`text(When)\ \ t = 0,\ \ V = 8000`
`(dV)/(dt)` | `=1/2 V^(1/3)` |
`(dt)/(dV)` | `=2/V^(1/3)` |
`int_0^t\ dt` | `= int_8000^64000 2/V^(1/3)\ dV` |
`:.t` | `= [3V^(2/3)]_8000^64000` |
`= 3(1600 – 400)` | |
`= 3600\ \ text(seconds)` | |
`= 1\ \ text(hour)` |
Two quarter cylinders, each of radius `a`, intersect at right angles to form the shaded solid.
A horizontal slice `ABCD` of the solid is taken at height `h` from the base. You may assume that `ABCD` is a square, and is parallel to the base.
(i) |
`text(The cylinder has equation)\ \ x^2 + y^2 = a^2`
`text(When)\ \ y = h,`
`x` | `= sqrt (a^2 – h^2)` |
`:. AB` | `= sqrt (a^2 – h^2)` |
(ii) `BC = sqrt (a^2 – h^2)`
`text(Area of)\ \ ABCD = (a^2 – h^2)`
`:.text(Volume of solid) =` | `int_0^a (a^2 – h^2) dh` |
`=` | `[a^2 h – h^3/3]_0^a` |
`=` | `[(a^3 – a^3/3) – 0]` |
`=` | `(2a^3)/3\ \ text(u³)` |
The diagram shows the graph `y = sqrt (x + 1)` for `0 <= x <= 3`. The shaded region is rotated about the line `x = 3` to form a solid.
Use the method of cylindrical shells to find the volume of the solid. (4 marks)
`(188 pi)/15\ \ text(u³)`
`text(Solution 1)`
`δV=2pi r h\ δx,\ \ \ text(where)`
`r=3-x,\ \ and\ \ h=y=sqrt (x+1)`
`:.V` | `=2 pi int_0^3 (3 – x) sqrt (x + 1)\ dx` |
`=2 pi int_0^3 (3 sqrt (x + 1) – x sqrt (x + 1))\ dx` | |
`=2 pi [2 (x + 1)^(3/2)]_0^3- 2 pi int_0^3 x sqrt (x + 1))\ dx` |
`text(Integrating by parts)`
`u` | `=x` | `u′` | `=1` |
`v′` | `=(x+1)^(1/2)` | `v` | `=2/3 (x+1)^(3/2)` |
`:.V` | `=2 pi [2 (x + 1)^(3/2)]_0^3 – 2 pi ([2/3 x (x + 1)^(3/2)]_0^3 – int_0^3 2/3 (x + 1)^(3/2)\ dx)` |
`=4 pi (8 – 1) – (4 pi)/3 (24 – 0 – [2/5 (x + 1)^(5/2)]_0^3)` | |
`=28 pi – (4 pi)/3 (24 – [2/5 xx 32 – 2/5])` | |
`=28 pi – (4 pi)/3 xx 58/5` | |
`=(188 pi)/15\ \ text(u³)` |
`text{Solution 2 (Substitution)}`
`int_0^3 x sqrt(x + 1)\ dx`
`text(Let)\ \ u = x + 1,\ \ du = dx,\ \ x = u – 1`
`text(When)\ \ x = 0,\ \ u = 1`
`text(When)\ \ x = 3,\ \ u = 4`
`int_0^3 x sqrt (x + 1)\ dx =` | `int_1^4 (u – 1) sqrt u\ du` |
`=` | `int_1^4 (u^(3/2) – u^(1/2)) du` |
`=` | `[2/5 u^(5/2) – 2/3 u^(3/2)]_1^4` |
`=` | `(64/5 – 16/3) – (2/5 – 2/3)` |
`=` | `62/5 – 14/3` |
`=` | `116/15` |
`:.V =` | `2 pi [2 (x + 1)^(3/2)]_0^3 – 2 pi xx 116/15` |
`=` | `28 pi – (232 pi)/15` |
`=` | `(188 pi)/15\ \ text(u³)` |
The polynomial `P(x) = x^4 - 4x^3 + 11x^2 - 14x + 10` has roots `a + ib` and `a + 2ib` where `a` and `b` are real and `b != 0.`
(i) `text(S)text(ince coefficients of)\ \ P(x)\ \ text(are real,)`
`=>\ text(Complex roots occur in conjugate pairs)`
`=>\ text(Roots are)\ \ a +- ib\ \ and\ \ a +- 2ib`
`text(Sum of roots) = -b/a=4`
`4` | `=a + ib + a – ib + a + 2ib + a – 2ib` |
`4a` | `=4` |
`:.a` | `=1` |
`text(Products of roots)`
`(a + ib) (a – ib) (a – 2ib) (a – 2ib)` | `= 10` |
`(a^2 + b^2) (a^2 + 4b^2)` | `= 10` |
`(1 + b^2) (1 + 4b^2)` | `= 10` |
`4b^4 + 5b^2 + 1` | `= 10` |
`4b^4 + 5b^2 – 9` | `= 0` |
`(4b^2 + 9) (b^2 – 1)` | `= 0` |
`:.b^2 = 1,\ \ \ \ (b\ \ text{is real})`
`:.b = +- 1`
`:.P(x)\ text(has roots)\ \ \ 1 +- i,\ 1 +- 2i.`
(ii) | `P(x)` | `=(x – 1 – i) (x – 1 + i)(x-1-2i)(x-1+2i)` |
`=(x^2 – 2x + 2)(x^2 – 2x + 5)` |
The complex number `z` is such that `|\ z\ |=2` and `text(arg)(z) = pi/4.`
Plot each of the following complex numbers on the same half-page Argand diagram.
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `cot theta + text(cosec)\ theta =` | `(cos theta)/(sin theta) + 1/(sin theta)` |
`=` | `(1 + cos theta)/(sin theta)` |
`=` | `(1 + 2 cos^2 (theta/2) – 1)/(2 sin (theta/2) cos (theta/2))` |
`=` | `(2 cos^2(theta/2))/(2 sin (theta/2) cos (theta/2))` |
`=` | `(cos (theta/2))/(sin (theta/2))` |
`=` | `cot (theta/2)` |
ii. `int (cot theta + text(cosec)\ theta)\ d theta =` | `int cot (theta/2)\ d theta` |
`=` | `int (cos (theta/2))/(sin (theta/2))\ d theta` |
`=` | `2 ln\ |sin\ theta/2| + c` |
Consider the complex numbers `z = -sqrt 3 + i` and `w = 3 (cos\ pi/7 + i sin\ pi/7).`
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `|\ z\ |` | `= sqrt ((-sqrt3)^2 + 1^2)` |
`= 2` |
ii. `text(arg)\ (z) =` | `tan^-1 (1- sqrt 3)` |
`=` | `pi – pi/6` |
`=` | `(5 pi)/6` |
iii. `text(arg) (z/w) =` | `text(arg)\ z – text(arg)\ w` |
`=` | `(5 pi)/6 – pi/7` |
`=` | `(29 pi)/42` |
Suppose `0 <= t <= 1/sqrt 2.`
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. | `0` | `<= t <= 1/sqrt 2` |
`0` | `<= t^2 <= 1/2` | |
`0` | `>= -t^2 >= -1/2` | |
`1` | `>= 1 – t^2 >= 1/2` | |
`1` | `<= 1/(1 – t^2) <= 2` | |
`2t^2` | `<= (2t^2)/(1 – t^2) <= 4t^2,\ \ \ \ (2t^2>0)` | |
`:. 0` | `<= (2t^2)/(1 – t^2) <= 4t^2` |
ii. `1/(1 + t) + 1/(1 – t) – 2`
`=((1-t)+(1+t)-2(1-t^2))/(1-t^2)`
`=(2t^2)/(1-t^2)`
`text{Substituting into part (i)}`
`:. 0 <= 1/(1 + t) + 1/(1 – t) – 2 <= 4t^2`
iii. | `int_0^x 0\ dt` | `<= int_0^x (1/(1 + t) + 1/(1 – t) – 2)\ dt <= int_0^x 4t^2\ dt` |
`0` | `<= [log_e (1 + t) – log_e (1 – t) – 2t]_0^x <= [(4t^3)/3]_0^x` | |
`0` | `<= [log_e (1 + x) – log_e (1 – x) – 2x]<= [(4x^3)/3]` | |
`0` | `<= log_e ((1 + x)/(1 – x)) – 2x <= (4x^3)/3` |
iv. `text(S)text(ince)\ \ e^a>e^b\ \ text(when)\ \ a>b`
`e^0` | `<= e^([ln ((1 + x)/(1 – x)) – 2x]) <= e^((4x^3)/3)` |
`1` | `<= e^(ln ((1 + x)/(1 – x))) xx e^(-2x) <= e^((4x^3)/3)` |
`1` | `<= ((1 + x)/(1 – x)) e^(-2x) <= e^((4x^3)/3)` |
The sequence `{x_n}` is given by
`x_1 = 1` and `x_(n + 1) = (4 + x_n)/(1 + x_n)` for `n >= 1.`
--- 10 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(If)\ \ n = 1`
`x_1=2 ((1 – 1/3)/(1 + 1/3))=(2 xx 2/3)/(4/3)=1`
`:.text(True for)\ \ n = 1`
`text(Assume true for)\ \ n=k,`
`text(i.e.)\ \ \ \ x_k = 2 ((1 + alpha^k)/(1 – alpha^k))`
`text(Prove true for)\ \ n=k+1`
`text(i.e.)\ \ \ \ x_(k + 1) = 2 ((1 + alpha^(k + 1))/(1 – alpha^(k+1)))`
`x_(k + 1) =` | `(4 + x_k)/(1 + x_k)` |
`=` | `(4 + 2 ((1 + alpha^k)/(1 – alpha^k)))/(1 + 2((1 + alpha^k)/(1 – alpha^k)))` |
`=` | `2 [(2(1 – alpha^k) + (1 + alpha^k))/(1 – alpha^k + 2 (1 + alpha^k))]` |
`=` | `2 [(2 – 2 alpha^k + 1 + alpha^k)/(1 – alpha^k + 2 + 2 alpha^k)]` |
`=` | `2 [(3 – alpha^k)/(3 + alpha^k)]` |
`=` | `2 [(1 – alpha^k xx 1/3)/(1 + alpha^k xx 1/3)]` |
`=` | `2 [(1 + alpha^k xx alpha)/(1 – alpha^k xx alpha)],\ \ \ \ (alpha=-1/3)` |
`=` | `2 [(1 + alpha^(k + 1))/(1 – alpha^(k + 1))]` |
`=` | `text(RHS)` |
`:.text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.text(S)text(ince true for)\ \ n=1, text(by PMI, true for all integral)\ \ n >= 1.`
ii. `text(S)text(ince)\ \ lim_(n -> oo) (-1/3)^n=0`
`:.lim_(n -> oo) x_n` | `=2 ((1 + (-1/3)^n)/(1 – (-1/3)^n))` |
`=2` |
The curves `y = cos x` and `y = tan x` intersect at a point `P` whose `x`-coordinate is `alpha.`
(i) `y = cos x,\ \ y prime = -sin x`
`text(When)\ \ x` | `=alpha,` |
`y` | `= cos\ alpha` |
`m_1` | `=- sin\ alpha` |
`y = tan x,\ \ y prime = sec^2 x`
`text(When)\ \ x` | `=alpha,` |
`y` | `=tan\ alpha` |
`m_2` | `=sec^2 alpha` |
`text(S)text(ince intersection occurs when)\ \ x=alpha`
`=> cos\ alpha = tan\ alpha`
`m_1 xx m_2` | `=-sin\ alpha xx sec^2 alpha` |
`=(-sin\ alpha)/(cos^2 alpha)` | |
`=(-tan\ alpha)/(cos\ alpha)` | |
`=-1` |
`:.text(The curves intersect at right-angles at)\ \ P.`
(ii) | `text(At)\ \ P,\ \ \ cos\ α` | `= tan\ α` |
`cos^2 α` | `=tan^2 α` | |
`=sec^2 α-1` | ||
`1` | `=sec^4 α-sec^2 α` | |
`0` | `=sec^4 α-sec^2 α-1` |
`:. sec^2 α` | `=(1+-sqrt(1+4))/2` |
`=(1+sqrt5)/2\ \ \ \ \ (sec^2 alpha >0)` |
In an alien universe, the gravitational attraction between two bodies is proportional to `x^(–3)`, where `x` is the distance between their centres.
A particle is projected upward from the surface of a planet with velocity `u` at time `t = 0`. Its distance `x` from the centre of the planet satisfies the equation
`ddot x = - k/x^3.`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Show that if `u >= sqrt (gR)` the particle will not return to the planet. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
(1) Use the formula in part (ii) to find `D` in terms of `u, R` and `g.` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
(2) Use the formula in part (iii) to find the time taken for the particle to return to the surface of the planet in terms of `u, R` and `g.` (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
`(2)\ \ (2uR)/(gR – u^2)`
i. |
`text(When)\ x=R,\ \ ddot x = – k/(R^3)`
`text(Given)\ \ ddot x = -g\ \ text(on the surface)`
`-g =` | `-k/R^3` |
`:.k =` | `gR^3` |
ii. | `ddot x` | `=- (gR^3)/x^3` |
`1/2 v^2` | `= int – (gR^3)/x^3\ dx` | |
`= (gR^3)/(2x^2)+c_1` | ||
`:.v^2` | `=(gR^3)/x^2 +c_2` |
`text(When)\ t=0, x=R and v=u`
`u^2` | `=(gR^3)/R^2 +c_2` |
`c_2` | `=u^2-gR` |
`:.v^2` | `=(gR^3)/x^2 +u^2-gR` |
`=(gR^3)/x^2 -(gR-u^2)` |
iii. `text(Solution 1)`
`text(If)\ \ u >= sqrt (gR)\ \ text(then)\ \ u^2 >= gR`
`x` | `= sqrt (R^2 + 2uRt – (gR – u^2) t^2)` |
`≥sqrt (R^2 + 2sqrt(gR)Rt – (gR – gR) t^2)` | |
`≥sqrt (R^2 + 2sqrt(gR)Rt)` | |
`>sqrt (R^2)\ \ \ \ (t>0)` | |
`>R` |
`:. x>R\ \ text(when)\ \ t>0,\ text(and the particle does not)`
`text(return to the surface of the planet.)`
`text(Solution 2)`
`v^2` | `=(gR^3)/x^2 -(gR-u^2)` |
`>=(gR^3)/x^2\ \ \ \ text{(since}\ u^2 >= gR text{)}` | |
`v` | `>=0` |
`:.\ text(S)text(ince)\ \ v>=0,\ \ text(the particle is never moving back)`
`text(towards the planet and will never return.)`
iv. (1) `v^2 = (gR^3)/D^2 – (gR – u^2)`
`x = D\ \ text(occurs when)\ \ v = 0`
`:.0 =` | `(gR^3)/D^2 – (gR – u^2)` |
`D^2 =` | `(gR^3)/(gR – u^2)` |
`:.D =` | `sqrt ((gR^3)/(gR – u^2))` |
iv. (2) `text(Find)\ \ t\ \ text(when)\ \ x = R`
`text{Using part (iii)}`
`R` | `=sqrt (R^2 + 2uRt – (gR – u^2) t^2)` |
`R^2` | `= R^2 + 2uRt – (gR – u^2) t^2` |
`0` | `= t(2uR – (gR – u^2)t)` |
`:.t` | ` = (2uR)/(gR – u^2)\ \ \ \ (t>0)` |
`:.\ text(It takes)\ \ (2uR)/(gR – u^2)\ \ text(seconds to return to the planet.)`
In `Delta ABC, /_ CAB = alpha, /_ ABC = beta` and `/_ BCA = gamma`. The point `O` is chosen inside `Delta ABC` so that `/_ OAB = /_ OBC = /_ OCA = theta`, as shown in the diagram.
(i) |
`/_ CAB = alpha,\ \ \ /_ ABC = beta,\ \ \ /_ BCA = gamma`
`text(Using the sine rule in)\ \ Delta OAB:`
`(OA)/(sin (beta – theta))` | `= (OB)/(sin theta)` |
`(OA)/(OB)` | `= (sin (beta – theta))/(sin theta)` |
(ii) | `text(Similarly,)` | `\ \ \ (OA)/(OC)` | `= (sin theta)/(sin (alpha – theta))` |
`\ \ \ (OB)/(OC)` | `= (sin (gamma – theta))/(sin theta)` |
`(OA)/(OB)*(OB)/(OC) * (OC)/(OA)` | `= (sin (beta – theta))/(sin theta) * (sin (gamma – theta))/(sin theta) * (sin (alpha – theta))/(sin theta)` |
`1` | `= (sin (beta – theta) sin (gamma – theta) sin (alpha – theta))/(sin^3 theta)` |
`:. sin^3 theta` | `=sin (alpha – theta) sin (beta – theta) sin (gamma – theta)` |
(iii) `text(RHS) =` | `(sin (y – x))/(sin x sin y)` |
`=` | `(sin y cos x – cos y sin x)/(sin x sin y)` |
`=` | `(cos x)/(sin x) – (cos y)/(sin y)` |
`=` | `cot x – cot y` |
`=` | `text(LHS)` |
(iv) `(cot theta – cot alpha) (cot theta – cot beta) (cot theta – cot gamma) `
`=(sin (alpha – theta))/(sin alpha sin theta) * (sin (beta – theta))/(sin beta sin theta) * (sin (gamma – theta))/(sin gamma sin theta)\ \ \ \ text{(using part (iii))}`
`=sin^3theta/(sin alpha sin beta sin gamma sin^3 theta)\ \ \ \ text{(using part (ii))}`
`=text(cosec)\ alpha\ text(cosec)\ beta\ text(cosec)\ gamma`
(v) `text(Let)\ \ gamma = 90^@,\ \ =>alpha = beta = 45^@`
`text{Substituting into part (iv)}`
`(cot theta – 1) (cot theta – 1) (cot theta – 0)` | `= sqrt 2 xx sqrt2 xx 1` |
`(cot^2 theta – 2 cot theta + 1) cot theta` | `= 2` |
`cot^3 theta – 2 cot^2 theta + cot theta – 2` | `= 0` |
`cot^2 theta (cot theta – 2) + 1 (cot theta – 2)` | `= 0` |
`(cot theta – 2) (cot^2 theta + 1)` | `= 0` |
`cot theta` | `=2,\ \ \ \ \ (cot^2 theta ≠ -1)` |
`tan theta` | `=1/2` |
`:. theta` | `=tan^-1\ 1/2` |
`=0.46\ \ text(radians)` |
In a chess match between the Home team and the Away team, a game is played on each of board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is `0.2`, the probability of a draw is `0.6` and the probability that the Home team loses is `0.2`.
The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 1, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as `WDLD`.
(i) `text(3 possibilities on each board)`
`:.\ text(Number of different recordings)`
`=3^4`
`= 81`
(ii) | `P (WDLD)` | `= 0.2 xx 0.6 xx 0.2 xx 0.6` |
`= 0.0144` |
(iii) `text(Solution 1)`
`text(Home team scores more points)`
`WWWW` | `=0.2^4` |
`WWWD` | `=\ ^4C_3 xx 0.2^3 xx 0.6` |
`WWDD` | `=(4!)/(2!2!) xx 0.2^2 xx 0.6^2` |
`WDDD` | `=\ ^4C_3 xx 0.2 xx 0.6^3` |
`WWWL` | `=\ ^4C_3 xx 0.2^4` |
`WWDL` | `= (4!)/(2!) xx 0.2^2 xx 0.6 xx 0.2` |
`:. P text{(Home team scores more points)}`
`= 0.2^4 + 4 xx 0.2^3 xx 0.6 + 6 xx 0.2^2 xx 0.6^2 + 4 xx 0.2 xx 0.6^3`
`+4 xx 0.2^4 + 12 xx 0.2^2 xx 0.6 xx 0.2`
`= 0.344`
`text(Solution 2)`
`text(S)text(ince probabilities are symmetric,)`
`Ptext{(one team winning)}=(1-Ptext{(draw)})/2`
`Ptext{(draw)}` | `=Ptext{(4D)} + P text{(1W,1L,2D)} + P text{(2W,2L)}` |
`=0.6^4+(4!)/(2!) xx 0.2^2 xx 0.6^2 + (4!)/(2!2!) xx 0.2^4` | |
`=0.1296+0.1728+0.0096` | |
`=0.312` |
`:.Ptext{(Home team winning)}` | `=(1-0.312)/2` |
`=0.344` |
A particle, `P`, of mass `m` is attached by two strings, each of length `l`, to two fixed points, `A` and `B`, which lie on a vertical line as shown in the diagram.
The system revolves with constant angular velocity `omega` about `AB`. The string `AP` makes an angle `alpha` with the vertical. The tension in the string `AP` is `T_1` and the tension in the string `BP` is `T_2` where `T_1 >= 0` and `T_2 >= 0`. The particle is also subject to a downward force, `mg`, due to gravity.
(i) |
`text(Resolving the forces vertically)`
`T_1 cos alpha = mg + T_2 cos alpha\ \ \ …\ (1)`
`text(Resolving the forces horizontally)`
` T_1 sin alpha+ T_2 sin alpha = mr omega^2\ \ \ …\ (2)`
`r = l sin alpha`
`:. (T_1 + T_2) sin alpha = m l sin alpha omega^2`
`T_1 + T_2 = m l omega^2`
(ii) `text(Substitute)\ \ T_2 = 0\ \ text{into (1) and (2)}`
`T_1` | `= (mg)/cos alpha\ \ \ …\ (1)` |
`T_1 sin alpha` | `= m r omega^2` |
`=ml sin alpha omega^2\ \ \ \ text{(since}\ \ r=l sin alpha text{)}` | |
`T_1` | `=ml omega^2\ \ \ …\ (2)` |
`:. m l omega^2` | `= (mg)/(cos alpha)` |
`omega^2` | `= g/(l cos alpha)` |
`:.omega` | `= sqrt(g/(l cos alpha))` |
(i) `text(LHS)` | `= cos (alpha + beta) + cos (alpha – beta)` |
`= cos alpha cos beta – sin alpha sin beta + cos alpha cos beta + sin alpha sin beta` | |
`= 2 cos alpha cos beta` |
(ii) `cos theta + cos 2 theta + cos 3 theta + cos 4 theta`
`=(cos 3 theta + cos theta)+ (cos 4 theta + cos 2 theta)`
`=2cos 2 theta cos theta + 2 cos 3 theta cos theta\ \ \ \ \ text{(using part (i))}`
`=2 cos theta (cos 2 theta+cos 3 theta)`
`=2cos theta(2 cos\ (5 theta)/2 cos\ theta/2)\ \ \ \ \ text{(using part (i))}`
`=4cos theta cos\ (5 theta)/2 cos\ theta/2`
`4cos theta cos\ (5 theta)/2 cos\ theta/2=0\ \ \ text(when)`
`cos theta=0\ \ => theta=pi/2, (3pi)/2`
`cos\ theta/2=0\ \ => theta=pi`
`cos\ (5 theta)/2=0\ \ => theta=pi/5, (3pi)/5, (7pi)/5, (9pi)/5`
`:. theta = pi/5,\ pi/2,\ (3 pi)/5,\ pi,\ (7 pi)/5,\ (3 pi)/2,\ (9 pi)/5`
A solid is formed by rotating the region bounded by the curve `y = x (x - 1)^2` and the line `y = 0` about the `y`-axis. Use the method of cylindrical shells to find the volume of this solid. (3 marks)
`pi/15\ \ text(u³)`
In the acute-angled triangle `ABC, \ K` is the midpoint of `AB, \ L` is the midpoint of `BC` and `M` is the midpoint of `CA`. The circle through `K, L` and `M` also cuts `BC` at `P` as shown in the diagram.
Copy or trace the diagram into your writing booklet.
(i) |
`(AK)/(KB) = (AM)/(MC) = 1/1`
`:. KM\ text(||)\ BC` | `\ \ \ text{(parallel lines cut in the}` `\ \ \ \ text{same proportion)` |
`text(Similarly,)\ \ (CL)/(LB) = (CM)/(MA) = 1/1`
`:. ML\ text(||)\ AB`
`:. KMLB\ \ text(is a parallelogram)`
(ii) | `/_ BPK` | `= /_ KML` | `text{(exterior angle of a cyclic}` `text{quadrilateral}\ \ KMLP text{)}` |
(iii) | `/_ KBP` | `= /_ KML\ \ \ text{(opposite angles of a parallelogram)}` |
`:. /_ KBP` | `= /_ KPB\ \ \ text{(both equal}\ \ /_ KML text{)}` |
`:. Delta BKP\ \ text(is isosceles)`
`text(S)text(ince)\ \ BK = KP=KA\ \ \ text{(given}\ K\ \ text(is the midpoint of)\ \ ABtext{)}`
`=>K\ \ text(is the centre of a circle, diameter)\ \ AB,`
`text(that passes through)\ \ A, B and P`
`/_ APB = 90^@\ \ \ \ text{(angle in semi-circle)}`
`:. AP _|_ BC.`
Let `P(p, 1/p), Q(q, 1/q)` and `R(r, 1/r)` be three distinct points on the hyperbola `xy = 1.`
(i) `text(Gradient)\ \ PQ =` | `(1/p – 1/q)/(p – q)` |
`=` | `((q – p)/(pq))/(p – q)` |
`=` | `-1/(pq)` |
`=>text(Gradient of perpendicular) = pq`
`:.\ text(Equation of)\ \ l,\ \ text(through)\ \ R(r, 1/r)`
`y – 1/r` | `= pq (x – r)` |
`y – 1/r` | `= pqx – pqr` |
`:.y` | `= pqx – pqr + 1/r` |
(ii) `text(Equation of)\ \ m,\ \ text(through)\ \ P(p, 1/p),\ \ text(is)`
`y = qrx – pqr + 1/p`
(iii) `T\ \ text(occurs at the intersection of)`
`y = pqx – pqr + 1/r\ \ \ …\ (1)`
`y = qrx – pqr + 1/p\ \ \ …\ (2)`
`text{Subtract (1) – (2)}`
`(pq – qr)x + 1/r – 1/p` | `=0` |
`q(p – r)x` | `= 1/p – 1/r` |
`q(p – r)x` | `= (r – p)/(pr)` |
`x` | `= -1/(pqr)` |
`text{Substitute into (1)}`
`y = (-pq)/(pqr) – pqr + 1/r = -pqr`
`:.T ((-1)/(pqr), -pqr)`
`text(Substituting into)\ \ xy = 1`
`text(LHS)` | `=(-1)/(pqr) xx (-pqr)` |
`=1` | |
`=\ text(RHS)` |
`:. T\ \ text(lies on the hyperbola)`
The base of a solid is the parabolic region `x^2 <= y <= 1` shaded in the diagram.
Vertical cross-sections of the solid perpendicular to the `y`-axis are squares.
Find the volume of the solid. (3 marks)
`2\ \ text(u³)`
`text(Length of square)=2x`
`:.\ text(Area of cross-section)`
`= (2x)^2`
`= 4x^2`
`delta V` | `= 4x^2\ δy\ \ \ text(where)\ \ y = x^2` |
`:.V` | `=int_0^1 4x^2\ dy` |
`=int_0^1 4y\ dy` | |
`=[2y^2]_0^1` | |
`=2\ \ text(u³)` |
Two of the zeros of `P(x) = x^4 - 12x^3 + 59x^2 - 138x + 130` are `a + ib` and `a + 2ib`, where `a` and `b` are real and `b > 0.`
(i) `text(S) text(ince the coefficients are real)`
`=>\ text(Roots occur in conjugate pairs.)`
`:.\ text(Roots are)\ \ \ a + ib,\ a – ib,\ a + 2ib,\ a – 2ib`
`text(Sum of roots) = 4a=-b/a=12`
`:. a=3`
`text(Product of the roots)=130`
`(3 + ib) (3 – ib) (3 + 2ib) (3 – 2ib)` | `= 130` |
`(9 + b^2 ) (9 + 4b^2 )` | `=130` |
`81 + 45b^2 + 4b^4` | `=130` |
`4b^4 + 45b^2 – 49` | `=0` |
`(4b^2 + 49) (b^2 − 1)` | `=0` |
`:.b = 1,\ \ \ \ \ (b>0)`
`:.a = 3,\ \ \ b = 1`
(ii) `text(Zeros are)\ \ 3 + i,\ 3 – i,\ 3 + 2i,\ 3 – 2i`
`P(x)` | `= (x – 3 – i) (x − 3+ i) (x − 3 – 2i) (x − 3 + 2i)` |
`=((x-3)^2+1)((x-3)^2+4)` | |
`= (x^2 − 6x +10) (x^2 − 6x + 13)` |
The diagram shows the graph of the hyperbola
`x^2/144 - y^2/25 = 1.`
(i) `text(Intersection when)\ \ y=0`
`x^2/144 + 0` | `=1` |
`x` | `= +-12` |
`:. xtext(-axis intersection at)\ \ (12, 0),\ (– 12, 0)`
(ii) `a=12,\ \ b = 5`
`text(Using)\ \ \ b^2` | `=a^2(e^2-1)` |
`25` | `= 144 (e^2 – 1)` |
`25/144` | `= e^2 – 1` |
`e^2` | `= 169/144` |
`e` | `= 13/12` |
`:.S(ae,0)-=(13,0)`
`:. S′(– ae,0)-=(– 13,0)`
(iii) | `text(Directrices when)\ \ \ x` | `=+-a/e` |
`=+-144/13` | ||
`text(Asymptotes when)\ \ \ y` | `=+-b/a x` | |
`=+- 5/12 x` |
The diagram shows the graph of `y =f(x)`. The graph has a horizontal asymptote at `y =2`.
Draw separate one-third page sketches of the graphs of the following:
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
The equation `|\ z - 1 - 3i\ | + |\ z - 9 - 3i\ | = 10` corresponds to an ellipse in the Argand diagram.
(i) `|\ z – 1 – 3i\ | + |\ z – 9 – 3i\ | = 10`
`text(This equation is Argand equivalent of)\ \ \ PS+PS′=2a,`
`text(where)\ \ z=P,\ \ text(and the foci are the points)`
`1+3i\ \ and\ \ 9+3i.`
`:.\ text(Centre of the ellipse)` | `= ((1+9)/2,(3+3)/2)` |
`=(5,3)` | |
`=5+3i` |
(ii) `text(Major axis length)\ =2a=10`
`:.a=5`
`text(Distance from centre to)\ S=ae=4`
`text(Minor axis length)\ =2b`
`text(Using Pythagoras,)`
`b^2` | `=5^2-4^2=9` |
`b` | `=3` |
`:.\ text(Length of the minor axis)\ = 6`
(iii) `text(Looking at the graph, we can see that)`
`text(arg)\ (5+0i)=0`
`text(arg)\ (0+3i)=pi/2`
`:.\ text(Range is)\ \ 0 <= text(arg)(z) <= pi/2`
Find, in modulus-argument form, all solutions of `z^3 = -1.` (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(cis)\ pi/3,\ \ \ -1,\ \ \ text(cis)\ -pi/3`
`z^3` | `=-1` |
`-1` | `=\ text(cis)\ (pi+2k pi)` |
`:.z` | `=\ text(cis)\ (pi+2k pi)/3\ \ \ text{(De Moivre)}` |
`text(When)\ k=0`
`z=\ text(cis)\ pi/3`
`text(When)\ k=1`
`z=\ text(cis)\ pi = -1`
`text(When)\ k=-1`
`z=\ text(cis)\ -pi/3`
`:.\ text(The 3 solutions to)\ \ z^3=-1\ \ text(are)`
`z=\ text(cis)\ pi/3,\ \ \ -1,\ \ \ text(cis)\ -pi/3`
The diagram shows an ellipse with eccentricity `e` and foci `S` and `S prime`.
The tangent at `P` on the ellipse meets the directrices at `R` and `W`. The perpendicular to the directrices through `P` meets the directrices at `N` and `M` as shown. Both `/_ PSR` and `/_ PS prime W` are right angles.
Let `/_ MPW = /_ NPR = beta.`
(i) | `(PS)/(PN)` | `= (PS prime)/(PM)=e` |
`:.\ PS` | `= ePN` |
`text(In)\ \ Delta PNR,`
`(PN)/(PR)` | `=cos beta` |
`PN` | `=PR cos beta` |
`:.\ PS` | `= e PR cos beta` |
`:.\ (PS)/(PR)` | `= e cos beta` |
(ii) `text(Similarly)\ \ PS prime = ePM`
`(PM)/(PW)` | `= cos beta` |
`PM` | `= PW cos beta` |
`PS prime` | `= ePW cos beta` |
`:.\ (PS prime)/(PW)` | `= e cos beta` |
`=>(PS prime)/(PW) = cos /_ WPS prime = e cos beta`
`=>(PS)/(PR) = cos /_ RPS = e cos beta`
`:.\ cos /_ RPS = cos /_ WPS prime`
`:.\ /_ RPS = /_ WPS prime`
In the diagram the secant `PQ` of the ellipse `x^2/a^2 + y^2/b^2 = 1` meets the directrix at `R`. Perpendiculars from `P` and `Q` to the directrix meet the directrix at `U` and `V` respectively. The focus of the ellipse which is nearer to `R` is at `S`.
Copy or trace this diagram into your writing booklet.
(i) `text(In)\ \ Delta PUR and Delta QVR`
`/_ PUR` | `= /_ QVR=90^@` |
`/_ PRU` | `= /_ QRV\ \ \ \ \ text{(common angle)}` |
`:.\ Delta PUR\ text(|||)\ Delta QVR\ \ \ \ \ text{(equiangular)}` |
`:.\ (PR)/(QR)` | `= (PU)/(QV)\ \ \ \ ` | `text{(corresponding sides in similar}` `text{triangles are proportional)}` |
(ii) `(SP)/(PU) = e and (SQ)/(QV) = e`
`(SP)/(PU)` | `= (SQ)/(QV)` |
`:.\ (PU)/(QV)` | `= (PS)/(QS)` |
(iii) `text(In)\ \ Delta PRS`
`(PS)/(sin alpha)` | `= (PR)/(sin(phi + theta))` |
`(PS)/(PR) ` | `= (sin alpha)/(sin (phi + theta))` |
`text(In)\ \ Delta QRS`
`(QS)/(sin alpha)` | `= (QR)/(sin theta)` |
`(QS)/(QR)` | `= (sin alpha)/(sin theta)` |
`text(Using)\ \ (PR)/(QR) = (PU)/(QV) = (PS)/(QS)\ \ \ text{(from parts (i) and (ii))}`
`=>(PS)/(PR)` | `= (QS)/(QR)` |
`(sin alpha)/(sin (phi + theta))` | `= (sin alpha)/(sin theta)` |
`:.\ sin (phi + theta) = sin theta`
`:.\ phi + theta = pi – theta\ \ \ or\ \ phi + theta = theta`
`:.\ phi = pi – 2 theta,\ \ \ \ \ (phi ≠ 0)`
(iv) | `text(As)\ \ phi` | `-> 0` |
`pi – 2 theta` | `-> 0` | |
`:.theta` | `-> pi/2` |
--- 5 WORK AREA LINES (style=lined) ---
Show that the graph of `y = f(x)` is concave up for `x > 0.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `text(Let)\ \ g(x)` | `=sin x-x` |
`g′(x)` | `=cosx-1<=1\ \ \ text(for all)\ x>0` |
`=>g(x)\ \ text(is a decreasing function)`
`text(When)\ \ x=0,\ \ g(0)=0`
`text(Considering)\ \ g(x)\ \ text(when)\ \ x>0,`
`g(x)` | `<0` |
`sinx -x` | `<0` |
`sin x` | `<x\ \ \ text(for all)\ x>0` |
ii. | `f(x)` | `=sin x – x + x^3/6` |
`f prime (x)` | `=cos x – 1 + x^2/2` | |
`f ″ (x)` | `=x – sin x` | |
`:.\ f″ (x)` | `> 0\ \ \ \ text{(using part (i))}` |
`:. f(x)\ \ text(is concave up for)\ \ x > 0.`
iii. `f″(x)>0\ \ \ \ text{(part (ii))}`
`=>f′(x)\ \ text(is an increasing function)`
`text(When)\ \ x=0,\ \ f′(0)=0`
`=>f′(x)>0\ \ \ text(for)\ \ x>0`
`:. f(x)\ \ text(has a positive gradient that steepens)`
`text(for)\ \ x>0, and f(0)=0`
`f(x)` | `>0` |
`sin x – x + x^3/6` | `>0` |
`:.sin x > x – x^3/6\ \ \ text(for)\ \ x>0`
A raindrop falls vertically from a high cloud. The distance it has fallen is given by
`x = 5 log_e ((e^(1.4 t) + e^(-1.4 t))/2)`
where `x` is in metres and `t` is the time elapsed in seconds.
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
What is the physical significance of the term `–0.2 v^2?` (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. | `x` | `= 5 log_e ((e^(1.4t) + e^(-1.4t))/2)` |
`v=dx/dt` | `= (5(1.4e^(1.4t) – 1.4e^(-1.4t)))/(e^(1.4t) + e^(-1.4t))` | |
`= 7 ((e^(1.4 t) – e^(-1.4 t))/(e^(1.4 t) + e^(-1.4 t)))` |
ii. | `v^2` | `=49 ((e^(1.4 t) – e^(-1.4 t))/(e^(1.4 t) + e^(-1.4 t)))^2` |
`=49 ((e^(2.8 t) + e^(-2.8 t)-2)/(e^(2.8 t) + e^(-2.8 t)+2))` | ||
`=49 ((e^(2.8 t) + e^(-2.8 t)+2-4)/(e^(2.8 t) + e^(-2.8 t)+2))` | ||
`=49 (((e^(1.4t) + e^(-1.4t))^2-2^2)/((e^(1.4t) + e^(-1.4t))^2))` | ||
`=49 (1 – (2/(e^(1.4t) + e^(-1.4t)))^2)` |
`text(S)text(ince)\ \ x` | `= 5 log_e ((e^(1.4 t) + e^(-1.4 t))/2)` |
`e^(x/5)` | `=(e^(1.4 t) + e^(-1.4 t))/2` |
`:. v^2` | `=49 (1 – (e^(- x/5))^2)` |
`=49(1-e^(- (2x)/5))` |
iii. | `ddotx` | `=d/(dx) (1/2 v^2)` |
`=49/2 xx 2/5 xx e^(-(2x)/5)` | ||
`=49/5 e^(-(2x)/5)` | ||
`=49/5 (1- v^2/49),\ \ \ \ text{(from part (ii))}` | ||
`=9.8 – 0.2v^2` |
iv. `-0.2v^2\ \ text(is the wind resistance acting on the rain drop.)`
v. `text(Terminal velocity occurs when)\ \ ddot x=0`
`9.8 – 0.2v^2` | `=0` |
`v^2` | `=49` |
`v` | `=7,\ \ \ \ (v > 0)` |
`:.\ text(The rain drop hits the ground travelling at)\ \ 7\ \ text(ms)^-1`
to show that, for `n >= 2`,
`2^n > ((n), (2)).` (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
`1 + 2 (1/2) + 3 (1/2)^2 + … + n (1/2)^(n - 1) = 4 - (n + 2)/2^(n - 1).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1 + 2 (1/2) + 3 (1/2)^2 + ….` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ a = 1,\ \ b = 1`
`2^n` | `= 1 + ((n), (1)) + ((n), (2)) + … + ((n), (n))` |
`:. 2^n` | `> ((n), (2))\ \ \ \ text(for)\ n>=2` |
ii. | `((n), (2))` | `= (n(n – 1))/(2 xx 1)` |
`:.2^n` | `>(n(n – 1))/(2 xx 1),\ \ \ \ \ text{(part (i))}` | |
`1/2^n` | `<2/(n (n – 1))` | |
`2/2^n` | `<4/(n (n – 1))` | |
`1/2^(n – 1) ` | `<4/(n (n – 1))` | |
`:.(n + 2)/2^(n – 1)` | `< (4n + 8)/(n (n – 1)),\ \ \ \ \ (n+2>0)` |
iii. `text(If)\ n = 1,`
`text(LHS) = 1`
`text(RHS) = 4 – (1+2)/2^0 = 1 = text(LHS)`
`:.\ text(True for)\ \ n = 1`
`text(Assume result is true for)\ \ n = k,\ \ text(i.e.)`
`1 + 2 (1/2) + 3 (1/2)^2 + … + k (1/2)^(k – 1) = 4 – (k + 2)/2^(k – 1).`
`text(Prove result is true for)\ \ n = k + 1,\ \ text(i.e.)`
`1 + 2 (1/2) + … + k (1/2)^(k – 1) + (k + 1) (1/2)^k = 4 – (k + 3)/2^k`
`text(LHS)` | `=1 + 2 (1/2) + … + k (1/2)^(k – 1) + (k + 1) (1/2)^k` |
`=4 – (k + 2)/2^(k – 1) + (k + 1)/2^k` | |
`=4 – (2k + 4 – k – 1)/2^k` | |
`=4 – (k + 3)/2^k` | |
`=\ text(RHS)` |
`=>text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.\ text(S)text(ince true for)\ \ n = 1, text(by PMI, true for integral)\ \ n>=1`
iv. `lim_(n -> oo) (4 – (n + 2)/2^(n – 1))=4 – lim_(n -> oo) ((n + 2)/2^(n – 1))`
`text{Using part (ii):}`
`(n + 2)/2^(n – 1)` | `< (4n + 8)/(n (n – 1))` |
`lim_(n -> oo) ((4n + 8)/(n (n – 1)))` | `= 0` |
`:. lim_(n -> oo) ((n + 2)/2^(n – 1)) ` | `= 0` |
`:.lim_(n -> oo) (4 – (n + 2)/2^(n – 1)) = 4 – 0 = 4`
In the diagram, `ABCDE` is a regular pentagon with sides of length `1`. The perpendicular to `AC` through `B` meets `AC` at `P.`
Copy or trace this diagram into your writing booklet.
(i) | `u` | `= cos\ pi/5` |
`AP` | `=u` | |
`AC` | `=AD=2u` |
`text(By symmetry,)\ \ /_ DAE = pi/5`
`text(Angle sum of a pentagon)=(n-2) pi=3 pi`
`:.text(Each angle of a regular pentagon)=(3 pi)/5`
`:.\ /_ CAD = pi/5`
`text(Using the cosine rule in)\ \ Delta ACD`
`1^2` | `= (2u)^2 + (2u)^2 – 2 xx 2u xx 2u cos\ pi/5` |
`1` | `= 8u^2 – 8u^2 xx u` |
`:.8u^3 – 8u^2 + 1 = 0` |
(ii) `(2x – 1)\ \ text(is a factor)`
`8x^3 – 8x^2 + 1 = (2x – 1) (4x^2 – 2x – 1)`
`text(Other roots occur when)`
`4x^2 – 2x – 1 = 0`
`x` | `=(2 +- sqrt (4 + 16))/8` |
`=(2 +- sqrt 20)/8` | |
`=(1 +- sqrt 5)/4` |
`=>u\ \ text(is a root of)\ \ 8u^3 – 8u^2 + 1 = 0,\ \ \ \ (u>0)`
`:.cos\ pi/5 = (1 + sqrt 5)/4`
--- 3 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `(x – 1) (5 – x)` | `= 5x – x^2 -5+ x` |
`= -(x^2 – 6x + 5)` | |
`= 4 – (x – 3)^2` | |
`= 2^2 – (x – 3)^2` |
ii. | `text(Let)\ \ x – 3` | `= 2 sin theta` |
`dx` | `= 2 cos theta\ d theta` |
`text(When)\ \ x = 1,\ \ theta = -pi/2`
`text(When)\ \ x = 5,\ \ theta = pi/2`
`:.int_1^5 sqrt (4 – (x – 3)^2)\ dx`
`=int_((-pi)/2)^(pi/2) sqrt ((4 – 4 sin^2 theta))*2 cos theta\ d theta` |
`=4 int_((-pi)/2)^(pi/2) sqrt(cos^2 theta) * cos theta\ d theta` |
`=4 int_((-pi)/2)^(pi/2) cos^2 theta\ d theta` |
`=2 int_((-pi)/2)^(pi/2) (1 + cos 2 theta)\ d theta` |
`=2[theta + (sin 2 theta)/2]_((-pi)/2)^(pi/2)` |
`=2[(pi/2 + 0) – ((-pi)/2 – 0)]` |
`=2 pi` |
The points at `P(x_1, y_1)` and `Q(x_2, y_2)` lie on the same branch of the hyperbola
`x^2/a^2 - y^2/b^2 = 1.`
The tangents at `P` and `Q` meet at `T(x_0, y_0).`
(i) | `x^2/a^2 – y^2/b^2` | `= 1` |
`text(S)text(ince)\ \ P(x_1, y_1)\ \ text(lies on the hyperbola)` | ||
`x_1^2/a^2 – y_1^2/b^2` | `=1\ \ \ …\ text{(*)}` | |
`(2x)/a^2 – (2y)/b^2 * (dy)/(dx)` | `=0` | |
`:.\ (dy)/(dx)` | `= (b^2 x)/(a^2 y)` |
`text(At)\ \ P(x_1, y_1),\ \ (dy)/(dx) = (b^2 x_1)/(a^2 y_1)`
`:.\ text(Equation of tangent at)\ \ P`
`y – y_1` | `=(b^2 x_1)/(a^2 y_1) (x – x_1)` |
`(y y_1)/b^2 – (y_1^2)/b^2` | `=(x x_1)/a^2 – (x_1^2)/a^2` |
`(x x_1)/a^2 – (y y_1)/b^2` | `=(x_1^2)/a^2 – (y_1^2)/b^2\ \ \ \ text{(using (*) above)}` |
`(x x_1)/a^2 – (y y_1)/b^2` | `=1` |
(ii) `text(Equation of tangent at)\ \ Q\ \ text(is)`
`(x x_2)/a^2 – (y y_2)/b^2 = 1`
`T (x_0, y_0)\ \ text(sits on both tangents)`
`:.\ (x_0 x_1)/a^2 – (y_0 y_1)/b^2 = 1`
`:.\ (x_0 x_2)/a^2 – (y_0 y_2)/b^2 = 1`
`=>P(x_1,y_1) and Q(x_2,y_2)\ \ text(both lie on the line)`
`(x_0 x)/a^2 – (y_0 y)/b^2 = 1`
`:.\ text(The equation of)\ \ PQ\ \ text(is)\ \ (x_0 x)/a^2 – (y_0 y)/b^2 = 1.`
(iii) `text(Substitute)\ \ S(ae, 0)\ \ text(into)\ \ PQ,`
`(aex_0)/a^2 – 0/b^2` | `=1` |
`aex_0` | `=a^2` |
`x_0` | `= a/e` |
`:.\ T\ \ text(lies on the directrix of the hyperbola.)`
A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `\ ^12C_3= text(# Ways of selecting 3 R or Y from 12.)`
`\ ^24C_6=text(# Ways of selecting 6 from 24.)`
`P text{(exactly 3R)}` | `=(\ ^12C_3 xx \ ^12C_3)/(\ ^24C_6)` |
`=(220 xx 220)/(134\ 596)` | |
`=0.36\ \ text{(to 2 d.p.)}` |
ii. `text(Solution 1)`
`text(S)text(ince)\ \ P text{(> 3 Red)` | `=Ptext{(< 3 Red)}` |
`P text{(> 3 Red)` | `=1/2[1-Ptext{(exactly 3R)}]` |
`=1/2(1-0.36)` | |
`=0.32` |
`text(Solution 2)`
`P (> 3R)` | `=P (4R) + P (5R) + P (6R)` |
`=(\ ^12C_4 \ ^12C_2 + \ ^12C_5 \ ^12C_1 + \ ^12C_6 xx \ ^12C_0)/(\ ^24C_6)` | |
`=(43\ 098)/(134\ 596)` | |
`=0.32\ \ text{(to 2 d.p.)}` |
The polynomial `P(x) = x^3 + qx^2 + rx + s` has real coefficients. It has three distinct zeros, `alpha, - alpha and beta.`
(i) `text(Solution 1)`
`P(x) = x^3 + qx^2 + rx + s\ \ \ =>\ text(Roots)\ \ alpha, -alpha, beta.`
`alpha – alpha + beta` | `= -b/a=-q` |
`=>beta` | `=-q\ \ \ …\ (1)` |
`alpha * (- alpha) * beta` | `=-d/a= -s` |
`=>alpha^2 beta` | `=s\ \ \ …\ (2)` |
`-alpha^2 + alpha beta – alpha beta` | `= c/a=r` |
`=>alpha^2` | `=-r\ \ \ …\ (3)` |
`text{Substitute (1) and (3) into (2)` | |
`(-r) xx (-q)` | `= s` |
`:.\ qr` | `= s` |
`text(Solution 2)`
`text(S)text(ince)\ \ beta` | `= -q,` |
`P(-q)` | `=0` |
`(-q)^3 + q(-q)^2 + r(-q) + s` | `= 0` |
`:. qr` | `=s` |
(ii) `text(S) text(ince)\ \ q, r, s\ \ text(are real,)`
`=>beta = -q\ \ text(is real and)\ \ (x+q)\ \ text(is a factor)`
`=>alpha and – alpha\ \ text(are both complex.)`
`:.\ P(x) = (x + q) (x^2 + r)`
`text(If)\ \ x^2 + r` | `=0` |
`x` | `= +- sqrt (-r)` |
`text(S)text(ince)\ \ α^2=-r\ \ \ \ \ text{(see (3) in part (i))}`
`=> r>0\ \ text(for α to be complex)`
`:. x= +- i sqrt r\ \ \ \ text{(which are both purely imaginary)`
The base of a solid is the region bounded by the curve `y = log_e x`, the `x`-axis and the lines `x = 1` and `x = e`, as shown in the diagram.
Vertical cross-sections taken through this solid in a direction parallel to the `x`-axis are squares. A typical cross-section, `PQRS`, is shown.
Find the volume of the solid. (3 marks)
`2e – e^2/2 – 1/2\ \ text(u³)`
`text(Length of)\ PQ` | `=e-x` |
`text(Area of)\ PQRS` | `= (e-x)^2` |
`text(When)\ x = 1,\ \ y = 0`
`text(When)\ x = e,\ \ y = 1`
`δV` | `=(e-x)^2\ δy` |
`:.V` | `=int_0^1 (e – x)^2\ dy` |
`=int_0^1 (e – e^y)^2\ dy` | |
`=int_0^1 (e^2 – 2e^(y + 1) + e^(2y))\ dy` | |
`=[e^2 y – 2e^(y + 1) + e^(2y)/2]_0^1` | |
`=[(e^2 – 2e^2 + e^2/2) – (0 – 2e + 1/2)]` | |
`=2e – e^2/2 – 1/2\ \ text(u³)` |
(i) `sin (2 theta + theta)` | `= sin 2 theta cos theta + cos 2 theta sin theta` |
`= 2 sin theta cos theta cos theta + (cos^2 theta – sin^2 theta) sin theta` | |
`= 2 sin theta cos^2 theta + cos^2 theta sin theta – sin^3 theta` | |
`= 3 sin theta cos^2 theta – sin^3 theta` |
(ii) |
`text(LHS)` | `=4 sin theta (sin theta cos\ pi/3 + cos theta sin\ pi/3) (sin theta cos\ (2 pi)/3 + cos theta sin\ (2 pi)/3)` |
`=4 sin theta ((sin theta)/2 + (sqrt 3 cos theta)/2)(- (sin theta)/2 + (sqrt 3 cos theta)/2)` | ||
`=sin theta (sqrt 3 cos theta + sin theta)(sqrt 3 cos theta – sin theta)` | ||
`=sin theta (3 cos^2 theta – sin^2 theta)` | ||
`=3 sin theta cos^2 theta – sin^3 theta` | ||
`=sin 3 theta` |
(iii) `sin theta sin (theta + pi/3) sin (theta + (2 pi)/3)=1/4 sin\ 3 theta\ \ \ text{(part (ii))}`
`:.\ text(Maximum value)=1/4`
The diagram shows the graph `y = x(2 − x)` for `0 ≤ x ≤ 2`. The region bounded by the graph and the `x`-axis is rotated about the line `x = –2` to form a solid.
Which integral represents the volume of the solid?
`C`
`δV` | `= 2pi r\ y\ δx` |
`= 2pi(x + 2)x(2 − x)δx` | |
`:.V` | `= 2pi int_0^2 x(2 − x)(x + 2) dx.` |
`=>C`