Prove that \(\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}=\sin (\alpha+\beta)\). (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Show Answers Only
| \(\text{LHS}\) | \(=\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}\) |
| \(=\dfrac{\cos \alpha-[\cos \alpha\, \cos 2 \beta+\sin \alpha\, \sin 2 \beta]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\left[\cos \alpha\left(\cos ^2 \beta-\sin ^2 \beta\right)+\sin \alpha(2 \sin \beta\, \cos \beta)\right]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\, \cos ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\left(1-\sin ^2 \beta\right)+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha+\cos \alpha\, \sin ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{2 \sin \beta(\cos \alpha\, \sin \beta+\sin \alpha\, \cos \beta)}{2 \sin \beta}\) | |
| \(=\sin (\alpha+\beta)\) |
Show Worked Solution
| \(\text{LHS}\) | \(=\dfrac{\cos \alpha-\cos (\alpha+2 \beta)}{2 \sin \beta}\) |
| \(=\dfrac{\cos \alpha-[\cos \alpha\, \cos 2 \beta+\sin \alpha\, \sin 2 \beta]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\left[\cos \alpha\left(\cos ^2 \beta-\sin ^2 \beta\right)+\sin \alpha(2 \sin \beta\, \cos \beta)\right]}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\, \cos ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha\left(1-\sin ^2 \beta\right)+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{\cos \alpha-\cos \alpha+\cos \alpha\, \sin ^2 \beta+\cos \alpha\, \sin ^2 \beta+2 \sin \alpha\, \sin \beta\, \cos \beta}{2 \sin \beta}\) | |
| \(=\dfrac{2 \sin \beta(\cos \alpha\, \sin \beta+\sin \alpha\, \cos \beta)}{2 \sin \beta}\) | |
| \(=\sin (\alpha+\beta)\) |