Find the inverse function, \(f^{-1}(x)\), of the function \(f(x)=1-\dfrac{1}{x-2}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the inverse function, \(f^{-1}(x)\), of the function \(f(x)=1-\dfrac{1}{x-2}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(f^{-1} (x) = 2 + \dfrac{1}{1-x}\)
\(y=1-\dfrac{1}{x-2}\)
\(\text{Inverse: swap}\ x ↔ y\)
| \(x\) | \(=1-\dfrac{1}{y-2}\) | |
| \(\dfrac{1}{y-2}\) | \(=1-x\) | |
| \(y-2\) | \(=\dfrac{1}{1-x}\) | |
| \(y\) | \(=2+\dfrac{1}{1-x}\) |
Let \(f(x)=x^2-4 x+3\) for \(x \leqslant 2\). --- 2 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=blank) --- a. \(f(x)=(x-1)(x-3)\ \Rightarrow \ \text{Axis of symmetry at}\ \ x=2. \) \(f(2)=-1\) \(\text{Range}\ f(x): \ y \geqslant -1\ \Rightarrow \ \text{Domain}\ f^{-1}(x): \ x \geqslant -1 \) b. \(y=2-\sqrt{x+1}\) c. \(f(x)\ \text{intercepts:}\ (1,0), (0,3) \) \(f^{-1}(x)\ \text{intercepts:}\ (3,0), (0,1) \) a. \(f(x)=(x-1)(x-3)\ \Rightarrow \ \text{Axis of symmetry at}\ \ x=2. \) \(f(2)=-1\) \(\text{Range}\ f(x): \ y \geqslant -1\ \Rightarrow \ \text{Domain}\ f^{-1}(x): \ x \geqslant -1 \) b. \(\text{Inverse: swap}\ x ↔ y \) \(f^{-1}(x)\ \text{intercepts:}\ (3,0), (0,1) \)
\(x\)
\(=y^2-4y+3\)
\(x\)
\(=(y-2)^2-1\)
\(x+1\)
\(=(y-2)^2\)
\(y-2\)
\(=\pm \sqrt{x+1} \)
\(y\)
\(=2 \pm \sqrt{x+1} \)
\(y\)
\(=2-\sqrt{x+1}\ \ \ \ (\text{Range}\ f^{-1}(x): \ y \leqslant 2) \)
c. \(f(x)\ \text{intercepts:}\ (1,0), (0,3) \)
Consider \(f:(-\infty, 1]\rightarrow R, f(x)=x^2-2x\). Part of the graph of \(y=f(x)\) is shown below.
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \([-1, \infty)\)
b.
c. \(\text{When }f(x)\ \text{is written in turning point form}\)
\(y=(x-1)^2-1\)
\(\text{Inverse function: swap}\ x \leftrightarrow y\)
| \(x\) | \(=(y-1)^2-1\) |
| \(x+1\) | \(=(y-1)^2\) |
| \(-\sqrt{x+1}\) | \(=y-1\) |
| \(f^{-1}(x)\) | \(=1-\sqrt{x+1}\) |
\(\text{Domain}\ [-1, \infty)\)
The graph of a cubic function, \(y=f(x)\), is given below.
Which of the following functions has an inverse relation whose graph has more than 3 points with an \(x\)-coordinate of 1 ?
\(D\)
\(\text{An inverse function with more than 3 points when}\ \ x=1\ \ \text{is the same}\)
\(\text{as the original function intersecting}\ \ y=1\ \ \text{more than 3 times.}\)
\(\text{Consider}\ \ y=|f(x)| : \)
\( y=1\ \ \text{cuts}\ \ y=f(x)\ \text{three times and}\ \ y=|f(x)|\ \ \text{four times} \)
\(\text{as the graph below the x-axis (bottom right) is reflected in the axis.}\)
\(\Rightarrow D\)
A function is defined by `f(x) = 4-(1-x/2)^2` for `x` in the domain `(-∞, 2]`.
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `f(x) = 4-(1-x/2)^2`
`text(At)\ \ x = 2, \ f(x) = 4`
`text(At)\ \ x = 0, \ f(x) = 3`
`xtext(-intercept:)\ \ 1-x/2 = 2 \ -> \ x = -2`
ii. `text(Inverse function: swap)\ \ x ↔ y`
`x = 4-(1-y/2)^2`
| `(1-y/2)^2` | `= 4-x` |
| `1-y/2` | `= ±sqrt(4-x)` |
| `y/2` | `= 1 ± sqrt(4-x)` |
| `y` | `= 2 +- 2sqrt(4-x)` |
| `:. f^(-1)(x)` | `=2-2sqrt(4-x),\ \ \ (y <= 2)` |
| `text(Domain)\ \ f^(-1)(x)` | `= text(Range)\ f(x)` |
| `= x ∈ (-∞, 4]` |
iii.
Given `f(x) = 1 + sqrtx`, what are the domain and range of `f^(−1)(x)`
`C`
`text(Domain)\ \ f(x): \ x >= 0`
`text(Range)\ \ f(x): \ y >= 1`
`text(Domain)\ \ f^(−1) = text(Range)\ \ f(x) = x >= 1`
`text(Range)\ \ f^(−1) = text(Range)\ \ f(x) = y >= 0`
`=> C`
Let `h(x) = ( 7)/(x + 2) - 3` for `x>=0`.
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. `y_text(max)\ text(occurs when) \ x = 0`
`y_text(max) = (7)/(2) – 3 = (1)/(2)`
`text(As) \ \ x → ∞ , \ (7)/(x + 2) \ → \ 0^+`
`:. \ text(Range) \ \ h(x) = (-3, (1)/(2))`
b. `y = (7)/(x + 2)`
`text(Inverse: swap) \ x ↔ y`
| `x` | `= (7)/(y + 2) – 3` |
| `x + 3` | `= (7)/(y + 2)` |
| `y + 2` | `= (7)/(x + 3)` |
| `y` | `= (7)/(x + 3) – 2` |
`:. \ h^-1 = (7)/(x + 3) – 2`
The function `f(x) = 5x^3 + 10x^2 + 1` will have an inverse function for the domain
`D`
Given the function `h(x) = sqrt(2x + 3)-2` for `h>=-3/2`, find the inverse function `h^(-1)` and its domain. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`x>=–2 or [–2, oo)`
`y = sqrt (2x + 3)-2`
`text(Inverse: swap)\ \ x ↔ y`
| `x` | `= sqrt(2y + 3)-2` |
| `sqrt(2y + 3)` | `= x + 2` |
| `2y + 3` | `= (x + 2)^2` |
| `y` | `= 1/2(x + 2)^2-3/2` |
| `:. h^(-1)` | `= 1/2(x + 2)^2-3/2` |
| `text(Domain)\ \ h^(-1)(x)` | `= text(Range)\ \ h(x)` |
| `= x>=–2 or [–2, oo)` |
The function `f(x) = -sqrt(1 + sqrt(1 + x))` has inverse `f^(-1) (x)`.
The graph of `y = f^(-1) (x)` forms part of the curve `y = x^4 - 2x^2`.
The diagram shows the curve `y = x^4 - 2x^2`.
How many points do the graphs of `y = f(x)` and `y = f^(-1) (x)` have in common?
A. 1
B. 2
C. 3
D. 4
`A`
`f(x) = -sqrt(1 + sqrt(1 + x))`
`text(Domain)\ \ f(x)\ \ text(is)\ \ x >= -1`
`text(Range)\ \ f(x)\ \ text(is)\ \ y <= -1\ \ text(since)\ \ y\ \ text(decreases)`
`text(as)\ \ x\ \ text(increases.)`
`f(-1) = -sqrt(1 + sqrt 0) = -1`
`:.\ text{One intersection (only) occurs at}\ \ (-1, -1).`
`=> A`
`x = 3t^2`
`y = 9t, \ \ t > 0` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
The diagram below shows a sketch of the graph of `y = f(x)`, where `f(x) = 1/(1 + x^2)` for `x ≥ 0`.
--- 1 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
Let `α` be the `x`-coordinate of `P`. Explain why `α` is a root of the equation `x^3 + x − 1 = 0`. (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
| i. |
ii. `text(Domain of)\ \ f^(−1)(x)\ text(is)`
`0 < x ≤ 1`
iii. `f(x) = 1/(1 + x^2)`
`text(Inverse: swap)\ \ x↔y`
| `x` | `= 1/(1 + y^2)` |
| `x(1 + y^2)` | `= 1` |
| `1 + y^2` | `= 1/x` |
| `y^2` | `= 1/x − 1` |
| `= (1 − x)/x` | |
| `y` | `= ± sqrt((1 − x)/x)` |
`:.y = sqrt((1 − x)/x), \ \ y >= 0`
iv. `P\ \ text(occurs when)\ \ f(x)\ \ text(cuts)\ \ y = x`
`text(i.e. where)`
| `1/(1 + x^2)` | `= x` |
| `1` | `= x(1 + x^2)` |
| `1` | `= x + x^3` |
| `x^3 + x − 1` | `= 0` |
`=>\ text(S)text(ince)\ α\ text(is the)\ x\ text(-coordinate of)\ P,`
`text(it is a root of)\ \ \ x^3 + x − 1 = 0`
The diagram shows the graph `y = x/(x^2 + 1)`, for all real `x`.
Consider the function `f(x) = x/(x^2 + 1)`, for `x >= 1.`
The function `f(x)` has an inverse. (Do NOT prove this.)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Domain of)\ \ f(x)\ \ text(is)\ \ x>=1\ \ text{(given)}`
`=>\ text(Range of)\ \ f^(-1)(x)\ \ text(is)\ \ y >= 1`
`text(Range of)\ \ f(x)\ \ text(is)\ \ 0<y<1/2`
`=>\ text(Domain of)\ \ f^-1(x)\ text(is)\ 0 < x <= 1/2.`
| ii. |
iii. `y=x/(x^2+1)`
`text(Inverse:)\ \ x ↔ y`
| `x` | `= y/(y^2 + 1)` |
| `xy^2+ x` | `= y` |
| `xy^2-y+x` | `=0` |
| `y` | `= (1 +- sqrt(1 – 4x^2))/(2x)` |
`text(S)text(ince, range of)\ \ f^(-1)(x)\ \ text(is)\ \ y >= 1,`
`:. f^(-1)(x) = (1 + sqrt(1 – 4x^2))/(2x)`
Find the inverse of the function `y = x^3-2`. (2 marks)
`y = (x + 2)^(1/3)`
`y = x^3-2`
`text(For inverse),\ \ x harr y`
| `x` | `= y^3-2` |
| `y^3` | `= x + 2` |
| `:. y` | `= (x + 2)^(1/3)` |
Let `f(x) = x-1/2 x^2` for `x <= 1`. This function has an inverse, `f^(-1) (x)`.
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. |
| ii. | `y = x-1/2 x^2,\ \ \ x <= 1` |
`text(Inverse function: swap)\ \ x↔y,`
| `x` | `= y-1/2 y^2,\ \ \ y <= 1` |
| `2x` | `= 2y-y^2` |
| `y^2-2y + 2x` | `= 0` |
| `y` | `= (2 +- sqrt( (-2)^2-4 * 1 * 2x) )/2` |
| `= (2 +- sqrt(4-8x))/2` | |
| `= (2 +- 2 sqrt(1-2x))/2` | |
| `= 1 +- sqrt (1-2x)` |
`:. y = 1-sqrt(1-2x), \ \ (y <= 1)`
| iii. | `f^(-1) (3/8)` | `= 1-sqrt(1 -2(3/8))` |
| `= 1-sqrt(1-6/8)` | ||
| `= 1-sqrt(1/4)` | ||
| `= 1-1/2` | ||
| `= 1/2` |
Let `f(x) = sqrt(4x-3)`
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---

i. `f(x) = sqrt(4x-3)`
| `text(Domain exists when)\ \ 4x-3` | `>= 0` |
| `4x` | `>= 3` |
| `x` | `>= 3/4` |
ii. `text(Inverse function when)`
| `x` | `= sqrt(4y-3)` |
| `x^2` | `= 4y-3` |
| `4y` | `= x^2 + 3` |
| `y` | `= 1/4 x^2 + 3/4` |
`text(S)text(ince range of)\ \ f(x)\ \ text(is)\ \ y >= 0`
`=> text(Domain of)\ \ f^(-1) (x)\ \ text(is)\ \ x >= 0`
`:.\ f^(-1) (x) = 1/4 x^2 + 3/4,\ \ \ \ x >= 0`
iii. `text(Find intersection)`
| `y` | ` = sqrt(4x-3)\ \ …\ text{(1)}` |
| `y ` | `=x\ \ …\ text{(2)}` |
`text{Intersection occurs when}`
| `x` | `= sqrt(4x-3)` |
| `x^2` | `= 4x-3` |
| `x^2-4x + 3` | `= 0` |
| `(x-3)(x-1)` | `= 0` |
| `x` | `=1\ \ text(or 3)` |
`:.\ text(Intersection at)\ \ (1,1)\ \ text(and)\ \ (3,3)`
| iv. |