The numbers `a_(n)`, for integers `n >= 1`, are defined as
`{:[a_(1)=sqrt2],[a_(2)=sqrt(2+sqrt2)],[a_(3)=sqrt(2+sqrt(2+sqrt2)) \ text{, and so on.}]:}`
These numbers satisfy the relation `a_(n+1)^(2)=2+a_(n)`, for `n >= 1`. (Do NOT prove this)
Use mathematical induction to prove that `a_(n)=2cos\ pi/(2^(n+1))`, for all integers `n >= 1`. (4 marks)