SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Proof, EXT2 P2 EQ-Bank 11

A sequence is given by the recursive formula

`a_1=10, \ a_(n+1)=3a_n+4`  for  `n>=1`

Using mathematical induction to show the formula for the general term of the sequence is

`a_n=4(3^n)-2`   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solution)}`

Show Worked Solution

`text{Prove true for}\ \ n=1:`

`text{LHS}\ =a_1=10`

`text{RHS}\ =4(3^1)-2=10=\ text{LHS}`

`:.\ text{True for}\ \ n=1`
 

`text{Assume true for}\ \ n=k:`

`a_k=4(3^k)-2\ \ text{… (1)}`
 

`text{Prove true for}\ \ n=k+1:`

`text{i.e.}\ a_(k+1)=4(3^(k+1))-2`

`a_(k+1)` `=3a_k+4`  
  `=3[4(3^k)-2]+4`  
  `=4*3^k*3-6+4`  
  `=4(3^(k+1))-2`  
  `=\ text{RHS}`  

 
`:.\ text{True for}\ \ n=k+1`

`:.\ text{Since true for} \ n=1,\ text{by PMI, true for integers} \ n>=1.`

Filed Under: Induction, P2 Induction (Ext2) Tagged With: Band 3, smc-1044-60-Recursive, smc-5115-60-Recursive

Calculus, EXT2 C1 2022 HSC 14b

Let  `J_(n)=int_(0)^(1)x^(n)e^(-x)\ dx`, where "n" is a non-negative integer.

  1. Show that  `J_(0)=1-(1)/(e)`.  (1  mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Show that  `J_(n) <= (1)/(n+1)`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Show that  `J_(n)=nJ_(n-1)-(1)/(e)`.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. Using parts (i) and (iii), show by mathematical induction, or otherwise, that for all `n >= 1`,
  5.        `J_(n)=n!-(n!)/(e)sum_(r=0)^(n)(1)/(r!)`    (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  6. Using parts (ii) and (iv) prove that  `e=lim_(n rarr oo)sum_(r=0)^(n)(1)/(r!)`.  (1  mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
  3. `text{Proof (See Worked Solutions)}`
  4. `text{Proof (See Worked Solutions)}`
  5. `text{Proof (See Worked Solutions)}`
Show Worked Solution
i.    `J_0` `=int_0^1 e^(-x)\ dx`
    `=[-e^(-x)]_0^1`
    `=-e^(-1)+1`
    `=1-1/e`

 


Mean mark (i) 93%.

ii.  `text{Show}\ \ J_n<=1/(n+1)`

`text{Note:}\ e^(-x)<1\ \ text{for}\ \ x in [0,1]`

`J_n` `=int_0^1 x^n e^(-x)\ dx`  
  `leq int_0^1 x^n \ dx`  
  `leq 1/(n+1)[x^(n+1)]_0^1`  
  `leq 1/(n+1)(1^(n+1)-0)`  
  `leq 1/(n+1)\ \ text{… as required}`  

 


♦♦ Mean mark (ii) 28%.
 

iii.  `text{Show}\ \ J_n=nJ_(n-1)-1/e`

`u` `=x^n` `v′` `=e^(-x)`
`u′` `=nx^(n-1)` `v` `=-e^(-x)`
`J_n` `=[-x^n * e^(-x)]_0^1-int_0^1 nx^(n-1)*-e^(-x)\ dx`  
  `=(-1^n * e^(-1)+0^n e^0)+nint_0^1 x^(n-1)*e^(-x)\ dx`  
  `=nJ_(n-1)-1/e`  

 
iv.
   `text{Prove}\ \ J_(n)=n!-(n!)/(e)sum_(r=0)^(n)(1)/(r!)\ \ text{for}\ \ n >= 0`

`text{If}\ \ n=0:`

`text{LHS} = 1-1/e\ \ text{(see part (i))}`

`text{RHS} = 0!-0!/e (1/(0!)) = 1-1/e(1)=\ text{LHS}`

`:.\ text{True for}\ \ n=0.`
 

`text{Assume true for}\ \ n=k:`

`J_(k)=k!-(k!)/(e)sum_(r=0)^(k)(1)/(r!)`
   


♦ Mean mark (iv) 50%.

`text{Prove true for}\ \ n=k+1:`

`text{i.e.}\ \ J_(k+1)=(k+1)!-((k+1!))/(e)sum_(r=0)^(k+1)(1)/(r!)`

`J_(k+1)` `=(k+1)J_k-1/e\ \ text{(using part (iii))}`  
  `=(k+1)(k!-(k!)/(e)sum_(r=0)^(k)(1)/(r!))-1/e`  
  `=(k+1)!-((k+1)!)/(e)sum_(r=0)^(k)(1)/(r!)-1/e xx ((k+1)!)/((k+1)!)`  
  `=(k+1)!-((k+1)!)/e(\ sum_(\ r=0)^(k)(1)/(r!)+1/((k+1)!))`  
  `=(k+1)!-((k+1)!)/e(\ sum_(\ r=0)^(k+1)(1)/(r!))`  

 
`=>\ text{True for}\ \ n=k+1`

`:.\ text{S}text{ince true for}\ n=1,\ text{by PMI, true for integers}\ n>=1`
 

v.   `0<=J_n<= 1/(n+1)\ \ \ text{(part (ii))}`

`lim_(n->oo) 1/(n+1)=0\ \ => \ lim_(n->oo) J_n=0`

  
`text{Using part (iv):}`

`J_n/(n!)` `=1-1/e sum_(r=0)^(n)(1)/(r!)`  
`1/e sum_(r=0)^(n)(1)/(r!)` `=1-J_n/(n!)`  
`sum_(r=0)^(n)(1)/(r!)` `=e-(eJ_n)/(n!)`  
`lim_(n->oo)(\ sum_(\ r=0)^(n)(1)/(r!))`  `=lim_(n->oo)(e-(eJ_n)/(n!))`  
  `=e-0`  
  `=e`  

♦♦ Mean mark (v) 34%.

Filed Under: Induction, P2 Induction (Ext2), Recurrence Relations Tagged With: Band 2, Band 3, Band 5, smc-1044-60-Recursive, smc-1044-68-Sigma Notation, smc-1054-30-Logs/Exp, smc-5115-60-Recursive, smc-5115-68-Sigma notation

Proof, EXT2 P2 2022 HSC 13b

The numbers `a_(n)`, for integers `n >= 1`, are defined as
 

               `{:[a_(1)=sqrt2],[a_(2)=sqrt(2+sqrt2)],[a_(3)=sqrt(2+sqrt(2+sqrt2)) \ text{, and so on.}]:}`
 

These numbers satisfy the relation  `a_(n+1)^(2)=2+a_(n)`, for  `n >= 1`.     (Do NOT prove this)

Use mathematical induction to prove that  `a_(n)=2cos\ pi/(2^(n+1))`, for all integers  `n >= 1`.  (4 marks)

Show Answers Only

`text{Proof (See Worked Solution)}`

Show Worked Solution

`text{Prove}\ \ a_(n)=2cos(pi/(2^(n+1)))\ \ text{for}\ \ n >= 1`

`text{If}\ \ n=1:`

`a_1=2cos((pi)/(2^2))=2xx1/sqrt2=sqrt2`

`:.\ text{True for}\ n=1.`
 


Mean mark 58%.

`text{Assume true for}\ \ n=k:`

`a_(k)= =2cos(pi/(2^(k+1)))`
 

`text{Prove true for}\ \ n=k+1:`

`text{i.e.}\ \ a_(k+1)= 2cos(pi/(2^(k+2)))`

`text{LHS}` `=sqrt(2+a_k)`  
  `=sqrt(2+2cos(pi/(2^(k+1)))`  
  `=sqrt(2+2 cos(2 xx (pi/(2^(k+2)))))\ \ \ text{(using}\ \ cos(2theta)=2cos^2theta-1text{)}`  
  `=sqrt(2+2(2cos^2(pi/(2^(k+2)))-1)`  
  `=sqrt(2+4cos^2(pi/(2^(k+2)))-2)`  
  `=sqrt(4cos^2(pi/(2^(k+2)))`  
  `=2cos(pi/(2^(k+2)))`  
  `=\ text{RHS}`  

 

Filed Under: Induction, P2 Induction (Ext2) Tagged With: Band 5, smc-1044-30-Trig, smc-1044-60-Recursive, smc-5115-30-Trig, smc-5115-60-Recursive

Proof, EXT2 P2 2006 HSC 7c

The sequence  `{x_n}`  is given by

`x_1 = 1`  and  `x_(n + 1) = (4 + x_n)/(1 + x_n)`  for  `n >= 1.`

  1. Prove by induction that for  `n >= 1`,  `x_n = 2 ((1 + alpha^n)/(1 - alpha^n))`, where  `alpha = -1/3.`  (4 marks)

    --- 10 WORK AREA LINES (style=lined) ---

  2. Hence find the limiting value of  `x_n`  as  `n -> oo.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `2`
Show Worked Solution

i.    `text(If)\ \ n = 1`

`x_1=2 ((1 – 1/3)/(1 + 1/3))=(2 xx 2/3)/(4/3)=1`

`:.text(True for)\ \ n = 1`

 

`text(Assume true for)\ \ n=k,`

`text(i.e.)\ \ \ \ x_k = 2 ((1 + alpha^k)/(1 – alpha^k))`

`text(Prove true for)\ \ n=k+1`

`text(i.e.)\ \ \ \ x_(k + 1) = 2 ((1 + alpha^(k + 1))/(1 – alpha^(k+1)))`

`x_(k + 1) ­=` `(4 + x_k)/(1 + x_k)`
`­=` `(4 + 2 ((1 + alpha^k)/(1 – alpha^k)))/(1 + 2((1 + alpha^k)/(1 – alpha^k)))`
`­=` `2 [(2(1 – alpha^k) + (1 + alpha^k))/(1 – alpha^k + 2 (1 + alpha^k))]`
`­=` `2 [(2 – 2 alpha^k + 1 + alpha^k)/(1 – alpha^k + 2 + 2 alpha^k)]`
`­=` `2 [(3 – alpha^k)/(3 + alpha^k)]`
`­=` `2 [(1 – alpha^k xx 1/3)/(1 + alpha^k xx 1/3)]`
`­=` `2 [(1 + alpha^k xx alpha)/(1 – alpha^k xx alpha)],\ \ \ \ (alpha=-1/3)`
`­=` `2 [(1 + alpha^(k + 1))/(1 – alpha^(k + 1))]`
`­=` `text(RHS)`

 

`:.text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`

`:.text(S)text(ince true for)\ \ n=1, text(by PMI, true for all integral)\ \ n >= 1.`

 

ii.  `text(S)text(ince)\ \ lim_(n -> oo) (-1/3)^n=0`

`:.lim_(n -> oo) x_n` `=2 ((1 + (-1/3)^n)/(1 – (-1/3)^n))`
  `=2`

Filed Under: Induction, Induction EXT2, P2 Induction (Ext2) Tagged With: Band 4, Band 5, smc-1044-60-Recursive, smc-5115-60-Recursive

Proof, EXT2 P2 2010 HSC 6b

A sequence `a_n` is defined by  

`a_n = 2a_(n − 1) + a_(n − 2)`,

for `n ≥ 2`, with `a_0 = a_1 = 2`.

Use mathematical induction to prove that

`a_n = (1 + sqrt2)^n + (1 − sqrt2)^n`  for all  `n ≥ 0`.   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Prove)\ \ a_n = (1 + sqrt2)^n + (1 − sqrt2)^n\ text(for all)\ n ≥ 0.`

`text(where)\ a_0 = a_1 = 2, and  \ a_n = 2a_(n − 1) + a_(n − 2)\ \ text(for)\ \ n ≥ 2,\ `

 

`text(When)\ \ n=0,` `a_0` `= (1 + sqrt2)^0 + (1 − sqrt2)^0`
    `= 1 + 1=2`
`text(When)\ \ n=1,` `a_1` `= (1 + sqrt2)^1 + (1 − sqrt2)^1`
    `= 1 + sqrt2 + 1 − sqrt2=2`

 
`:.\ text(True for)\ n=0\ \ and\ n=1`

♦ Mean mark 36%.

 

`text(Assume that)`

`a_k = (1 + sqrt2)^k + (1 − sqrt2)^k\ text(and)`

`a_(k − 1) = (1 + sqrt2)^(k − 1) + (1 − sqrt2)^(k − 1)\ text(for all)\ k ≥ 1.`

 

`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ \ a_(k + 1) = (1 + sqrt2)^(k + 1) + (1 − sqrt2)^(k + 1).`

`a_(k + 1)` `= 2a_k + a_(k − 1).`
  `= 2(1 + sqrt2)^k + 2(1 − sqrt2)^k + (1 + sqrt2)^(k − 1) + (1 − sqrt2)^(k − 1)`
  `= (1 + sqrt2)^(k − 1)(2 + 2sqrt2 + 1) + (1 − sqrt2)^(k − 1)(2 − 2sqrt2 + 1)`
  `= (1 + sqrt2)^(k − 1)(1 + sqrt2)^2 + (1 − sqrt2)^(k − 1)(1− sqrt2)^2`
  `= (1 + sqrt2)^(k + 1) + (1 − sqrt2)^(k + 1)`

 

`=>\ text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k\ \ text(and)\ \ n = k − 1.`

`:.\ text(S)text(ince true for)\ n = 0 and n=1,\ text(by PMI, it is)`

`text(true for integral)\ n ≥ 0.`

Filed Under: Induction, Induction EXT2, P2 Induction (Ext2) Tagged With: Band 5, smc-1044-60-Recursive, smc-5115-60-Recursive

Copyright © 2014–2025 SmarterEd.com.au · Log in