Find the cube roots of \(2-2 i\). Give your answer in exponential form. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(\sqrt[3]{2-2i}= \sqrt2 e^{- \frac{i\pi}{12}}, \sqrt2 e^{\frac{i7\pi}{12}}, \sqrt2 e^{- \frac{i3\pi}{4}} \)
\(\text{Express}\ \ 2-2i\ \ \text{in exponential form:}\)
\(\big{|}2-2i\big{|}=2\sqrt2 \)
\(\arg(2-2i) = – \dfrac{\pi}{4} \)
\(2-2i=2\sqrt2 e^{-\frac{i\pi}{4}} \)
\(\text{Find}\ \ z=re^{i\theta},\ \ \text{where}\ \ z^3=r^3e^{i 3\theta}=2\sqrt2 e^{-\frac{i\pi}{4}} \)
\(r^3=2\sqrt2\ \ \Rightarrow\ \ r=\sqrt2 \)
\( i3\theta\) | \(= -\dfrac{i\pi}{4} \) | |
\(\theta_1\) | \(=-\dfrac{\pi}{12} \) |
\(\text{Since roots are found symmetrically around Argand diagram:}\)
\(\theta_2=-\dfrac{\pi}{12}+\dfrac{2\pi}{3}=\dfrac{7\pi}{12} \)
\(\theta_3=-\dfrac{\pi}{12}-\dfrac{2\pi}{3}=-\dfrac{3\pi}{4} \)
\(\therefore \sqrt[3]{2-2i}= \sqrt2 e^{- \frac{i\pi}{12}}, \sqrt2 e^{\frac{i7\pi}{12}}, \sqrt2 e^{- \frac{i3\pi}{4}} \)