The complex numbers \(z\) and \(w\) lie on the unit circle. The modulus of \(z+w\) is \(\dfrac{3}{2}\).
What is the modulus of \(z-w\) ?
- \(\dfrac{1}{8}\)
- \(\dfrac{\sqrt{7}}{2}\)
- \(\dfrac{3}{2}\)
- \(\dfrac{7}{4}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The complex numbers \(z\) and \(w\) lie on the unit circle. The modulus of \(z+w\) is \(\dfrac{3}{2}\).
What is the modulus of \(z-w\) ?
\(B\)
\(|z|=|w|=1, \quad \abs{z+w}=\dfrac{3}{2} \ \text{(given)}\)
\(\text{Find}\ \ \abs{z-w}:\)
\(\abs{z+\omega}^2=(z+\omega)(\bar{z}+\bar{\omega})=z \bar{z}+z \bar{\omega}+\omega \bar{z}+\omega \bar{\omega}\)
\(\abs{z-\omega}^2=(z-\omega)(\bar{z}-\bar{\omega})=\bar{z} z-z \bar{\omega}-\omega \bar{z}+\omega \bar{\omega}\)
| \(\abs{z+\omega}^2+|z-\omega|^2\) | \(=2 z \bar{z}+2 \omega \bar{\omega}=2\abs{z}^2+2\abs{\omega}^2=4\) |
| \(\dfrac{9}{4}+\abs{z-\omega}^2\) | \(=4\) |
| \(\abs{z-w}^2\) | \(=\dfrac{7}{4}\) |
| \(\abs{z-\omega}\) | \(=\dfrac{\sqrt{7}}{2}\) |
\(\Rightarrow B\)
It is given that \(\abs{z-1+i}=2\).
What is the maximum possible value of \(\abs{z}\)?
Let \(z\) be the complex number \(z=e^{\small{\dfrac{i \pi}{6}}} \) and \(w\) be the complex number \(w=e^{\small{\dfrac{3 i \pi}{4}}} \). --- 6 WORK AREA LINES (style=lined) --- --- 8 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) --- i. \(z=e^{\small\dfrac{i \pi}{6}} = \cos\,\dfrac{\pi}{6} + i \,\sin\,\dfrac{\pi}{6} = \dfrac{\sqrt3}{2} + \dfrac{1}{2}i \) \(w=e^{\small\dfrac{3i \pi}{4}} = \cos\,\dfrac{3\pi}{4} + i \,\sin\,\dfrac{3\pi}{4} = -\dfrac{1}{\sqrt2} + \dfrac{i}{\sqrt2} \) \(\angle AOB= \arg(w)-\arg(z)=\dfrac{3\pi}{4}-\dfrac{\pi}{6}=\dfrac{7\pi}{12} \) \( |z|=|w|=1\ \Rightarrow AOBC\ \text{is a rhombus.} \) \(\overrightarrow{OC}\ \text{is a diagonal of rhombus}\ AOBC \) \(\Rightarrow \overrightarrow{OC}\ \text{bisects}\ \angle AOB \) \(\therefore \angle AOC= \dfrac{1}{2} \times \dfrac{7\pi}{12}=\dfrac{7\pi}{24} \) iii. \(\text{In}\ \triangle AOC: \) \( \overrightarrow{AC}=\overrightarrow{OC}-\overrightarrow{OA} = \overrightarrow{OB} \) \(\Rightarrow \overrightarrow{OB}\ \text{is represented by}\ w. \) \(\text{Using the cos rule in}\ \triangle AOC: \)
\(|z+w|^2\)
\(=\Bigg{|} \dfrac{\sqrt3}{2}+\dfrac{1}{2}i-\dfrac{1}{\sqrt2}+\dfrac{i}{\sqrt2} \Bigg{|}\)
\(=\Bigg{|} \Bigg{(}\dfrac{\sqrt3}{2}-\dfrac{1}{\sqrt2} \Bigg{)} +\Bigg{(}\dfrac{1}{2}+\dfrac{1}{\sqrt2}\Bigg{)}\,i \Bigg{|}\)
\(=\Bigg{|} \dfrac{\sqrt6-2}{2\sqrt2}+\dfrac{\sqrt2+2}{2\sqrt2}\,i \Bigg{|}\)
\(= \dfrac{(\sqrt6-2)^2+(\sqrt2+2)^2}{(2\sqrt2)^2}\)
\(= \dfrac{6-4\sqrt6+4+2+4\sqrt2+4}{8}\)
\(=\dfrac{16-4\sqrt6+4\sqrt2}{8} \)
\(=\dfrac{4-\sqrt6+\sqrt2}{2} \)
\(\cos\,\dfrac{7\pi}{24}\)
\(=\dfrac{|z|^2+|z+w|^2-|w|^2}{2|z||z+w|}\)
\(=\dfrac{ 1+\frac{4-\sqrt6+\sqrt2}{2}-1}{2 \times 1 \sqrt{\frac{4-\sqrt6+\sqrt2}{2}}} \)
\(=\dfrac{\sqrt{\frac{4-\sqrt6+\sqrt2}{2}} \times 2} {2 \times 2} \)
\(=\dfrac{\sqrt{4( \frac{4-\sqrt6+\sqrt2}{2})}} {4} \)
\(=\dfrac{8-2\sqrt6+2\sqrt2}{4} \)
Let \(A\) and \(B\) be two distinct points in three-dimensional space. Let \(M\) be the midpoint of \(A B\).
Let \(S_1\) be the set of all points \(P\) such that \(\overrightarrow{AP} \cdot \overrightarrow{BP}=0\).
Let \(S_2\) be the set of all points \(N\) such that \(\Big|\overrightarrow{AN}\Big|=\Big| \overrightarrow{MN} \Big| \).
The intersection of \(S_1\) and \(S_2\) is the circle \(S\).
What is the radius of the circle \(S\) ?
\(D\)
`text{Diagram below is a 2-D sliced image of the 3-D geometry:}`
\(\overrightarrow{AP} \cdot \overrightarrow{BP}=0\).
\(r=\dfrac{\Big| \overrightarrow{AB} \Big|}{2} \)
\(S_2\ \text{includes}\ N\ \text{where}\ \Big| \overrightarrow{AN} \Big|=\Big| \overrightarrow{MN} \Big| = \dfrac{r}{2} \)
\(\text{Let}\ r_s=\ \text{radius of}\ S\)
\(\text{Point}\ P\ \text{is intersection of}\ S_1\ \text{and}\ S_2 \)
\(\text{By Pythagoras (see diagram):}\)
| \(r_s^2\) | \(=r^2-(\dfrac{r}{2})^2 \) | |
| \(=\dfrac{3r^2}{4}\) | ||
| \(r_s\) | \(=\dfrac{\sqrt3}{2} \times r\) | |
| \(=\dfrac{\sqrt3}{2} \cdot \dfrac{\Big| \overrightarrow{AB} \Big|}{2} \) | ||
| \(=\dfrac{\sqrt3 \Big| \overrightarrow{AB} \Big|}{4} \) |
\(=>D\)
The graph of the circle given by `|z - 2 - sqrt3i| = 1`, where `z ∈ C`, is shown below.
For points on this circle, find the maximum value of `|z|`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`sqrt7+1`
Consider the two non-zero complex numbers `z` and `w` as vectors.
Which of the following expressions is the projection of `z` onto `w` ?
`C`
`text{Let} \ \ z = a + i b \ \ =>\ underset~z = ((a),(b))`
`text{Let} \ \ w = c + i d \ \ =>\ underset~w = ((c),(d))`
`underset~z * underset~w = ac + bd`
`|underset~w|^2 = c^2 + d^2`
`text{proj}_(underset~w) underset~z = (underset~z*underset~w)/|underset~w|^2 *underset~w= (ac+bd)/(c^2+d^2)*underset~w`
| `z/w` | `=(a+ib)/(c+id) xx (c-id)/(c-id)` | |
| `=(ac+bd + i(bc-ad))/(c^2+d^2)` |
`text{Re}(z/w) =(ac+bd)/(c^2+d^2)`
`:.\ text{proj}_(underset~w) underset~z = text{Re} (z/w) w`
`=> C`
Two complex numbers, `u` and `v`, are defined as `u = −2 - i` and `v = −4 - 3i`.
--- 5 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. `text(Let)\ \ z = x + iy`
`z – u = x + 2 + iy + i`
`z – v = x + 4 + iy + 3i`
`|z – u| = |z – v|`
| `(x + 2)^2 + (y + 1)^2` | `= (x + 4)^2 + (y + 3)^2` |
| `x^2 + 4x + 4 + y^2 + 2y + 1` | `= x^2 + 8x + 16 + y^2 + 6y + 9` |
| `-4y` | `= 4x + 20` |
| `y` | `= −x – 5` |
| b. |
|
c. `|z – u| = |z – v|\ text(is the graph of the perpendicular bisector of the)`
`text(line joining)\ u and v.`
| d.i. |
|
d.ii. `text(Arg)(z – u) = pi/4 =>\ text(gradient) = 1, ytext(-intercept at)\ (0, 1)`
`:. f: (−2, ∞) -> RR, \ f(x) = x + 1`
Which diagram best represents the solutions to the equation `text(arg)(z) = text(arg)(z + 1 - i)`?
| A. | B. | ||
| C. | D. |
`text(D)`
| `text(arg)(z)` | `= text(arg)(z + 1 – i)` |
| `=text(arg)(z – (−1 + i))` |
`=>\ text(arg)(z – (−1 + i))\ \ text(is the argument of)\ \ z\ \ text(from)\ \ (-1+i).`
`text(Plot)\ \ (-1 + i)\ \ text(on the argand diagram and then test different)`
`text(positions of)\ \ z\ \ text(along the solutions for each option.)`
`=>\ text(D)`
The point `P` on the Argand diagram represents the complex number `z`, where `z` satisfies
`1/z + 1/bar z = 1.`
Give a geometrical description of the locus of `P` as `z` varies. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(Locus is a circle, centre)\ (1, 0), text(radius 1,)`
`text(excluding the point)\ (0, 0).`
| `1/z + 1/bar z` | `=1/(x + iy) +1/(x – iy)` |
| `=(x – iy + x+iy)/(x^2+y^2)` | |
| `=(2x)/(x^2+y^2)` |
| `(2x)/(x^2+y^2)` | `=1` |
| `x^2 + y^2` | `=2x` |
| `x^2 – 2x + 1 + y^2` | `=1` |
| `(x – 1)^2 + y^2` | `=1` |
`:.\ text(Locus is a circle, centre)\ (1, 0), text(radius 1,)`
`text(excluding the point)\ (0, 0).`
The complex number `z` satisfies `| z - 1 | = 1.`
What is the greatest distance that `z` can be from the point `i` on the Argand diagram?
`D`
Let `a` and `b` be real numbers with `a != b`. Let `z = x + iy` be a complex number such that
`|\ z - a\ |^2 - |\ z - b\ |^2 = 1.`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| i. | `|\ z – a\ |^2 – |\ z – b\ |^2` | `= 1` |
| `|\ (x-a)+iy\ |^2-|\ (x-b)+iy\ |^2` | `=1` | |
| `(x – a)^2 + y^2 – ((x – b)^2 + y^2)` | `=1` | |
| `(x – a)^2 – (x – b)^2` | `=1` | |
| `(x – a – (x – b)) (x – a + x – b)` | `=1` | |
| `(b – a) (2x – a – b)` | `=1` |
| `2x – a – b` | `= 1/(b – a)` |
| `2x` | `= a + b + 1/(b – a)` |
| `:. x` | `= (a + b)/2 + 1/(2(b – a))` |
ii. `text(The locus is the vertical line)`
`x = (a + b)/2 + 1/(2(b – a)).`