Let \(I_n=\displaystyle\int_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\, d x\), where \(n \geq 0\). Show that \((2 n+4) I_n=a(2 n+1) I_{n-1}\), for \(n>0\). (3 marks) --- 9 WORK AREA LINES (style=lined) --- \(I_n=\displaystyle{\int}_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,d x \ \ \text{where}\ \ n \geqslant 0\) \(\text{Show}\ \ (2 n+4) I_n=a(2 n+1) I_{n-1}\ \ \text{for}\ \ n>0\) \(I_n=\displaystyle{\int}_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\) \(\text{Using integration by parts: }\) \(\begin{array}{ll}u=x^{n+\frac{1}{2}} & v^{\prime}=(a-x)^{\frac{1}{2}} \\ u^{\prime}=\left(n+\frac{1}{2}\right) x^{n-\frac{1}{2}} & v=-\dfrac{2}{3}(a-x)^{\frac{3}{2}}\end{array}\) \(I_n=\displaystyle{\int}_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\,d x \ \ \text{where}\ \ n \geqslant 0\) \(\text{Show}\ \ (2 n+4) I_n=a(2 n+1) I_{n-1}\ \ \text{for}\ \ n>0\) \(I_n=\displaystyle{\int}_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\) \(\text{Using integration by parts: }\) \(\begin{array}{ll}u=x^{n+\frac{1}{2}} & v^{\prime}=(a-x)^{\frac{1}{2}} \\ u^{\prime}=\left(n+\frac{1}{2}\right) x^{n-\frac{1}{2}} & v=-\dfrac{2}{3}(a-x)^{\frac{3}{2}}\end{array}\)
\(I_n\)
\(=\left[u v\right]_0^a-\displaystyle{\int}_0^a u^{\prime} v\, dx\)
\(=\underbrace{\left[-\dfrac{2}{3} x^{n-\frac{1}{2}}(a-x)^{\frac{3}{2}}\right]_0^a}_{=0}+\dfrac{2}{3}\left(n+\frac{1}{2}\right) \displaystyle{\int}_0^a x^{n-\frac{1}{2}}(a-x)^{\frac{3}{2}}\, dx\)
\(=\dfrac{2 n+1}{3} \displaystyle{\int}_0^a a x^{n-\frac{1}{2}}(a-x)^{\frac{1}{2}}-x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\, dx\)
\(3I_n\)
\(=(2 n+1)\left[a I_{n-1}-I_n\right]\)
\(3 I_n+(2 n+1) I_n\)
\(=a(2 n+1) I_{n-1}\)
\((2 n+4) I_n\)
\(=a(2 n+1) I_{n-1}\)
\(I_n\)
\(=\left[u v\right]_0^a-\displaystyle{\int}_0^a u^{\prime} v\, dx\)
\(=\underbrace{\left[-\dfrac{2}{3} x^{n-\frac{1}{2}}(a-x)^{\frac{3}{2}}\right]_0^a}_{=0}+\dfrac{2}{3}\left(n+\frac{1}{2}\right) \displaystyle{\int}_0^a x^{n-\frac{1}{2}}(a-x)^{\frac{3}{2}}\, dx\)
\(=\dfrac{2 n+1}{3} \displaystyle{\int}_0^a a x^{n-\frac{1}{2}}(a-x)^{\frac{1}{2}}-x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\, dx\)
\(3I_n\)
\(=(2 n+1)\left[a I_{n-1}-I_n\right]\)
\(3 I_n+(2 n+1) I_n\)
\(=a(2 n+1) I_{n-1}\)
\((2 n+4) I_n\)
\(=a(2 n+1) I_{n-1}\)
Calculus, EXT2 C1 2024 HSC 15b
Let \(I_n=\displaystyle\int_0^a x^{n+\frac{1}{2}}(a-x)^{\frac{1}{2}}\, d x\), where \(n \geq 0\). Show that \((2 n+4) I_n=a(2 n+1) I_{n-1}\), for \(n>0\). (3 marks) --- 9 WORK AREA LINES (style=lined) ---