Using a suitable substitution, find \(\displaystyle\int \dfrac{2 x^2}{\sqrt{2 x-x^2}}\, d x\). (3 marks) --- 5 WORK AREA LINES (style=lined) --- \(I=3 \sin ^{-1}(x-1)-4 \sqrt{2x-x^2}-(x-1) \sqrt{2x-x^2}+c\) \(\text {Let} \ \ x-1=\sin \theta \ \Rightarrow \ x=1+\sin \theta\) \(\dfrac{dx}{d \theta}=\cos \theta \ \Rightarrow \ dx=\cos \theta \, d \theta\) \(\Rightarrow \cos \theta=\sqrt{1^2-(x-1)^2}=\sqrt{2x-x^2}\) \(\therefore I=3 \sin ^{-1}(x-1)-4 \sqrt{2x-x^2}-(x-1) \sqrt{2x-x^2}+c\)
\(\displaystyle \int \dfrac{2x^2}{\sqrt{2x-x^2}}\, dx\)
\(=\displaystyle \int \frac{2 x^2}{\sqrt{1-(1-2 x+x^2)}}\, dx\)
\(=\displaystyle \int \frac{2 x^2}{\sqrt{1-(x-1)^2}} \, dx\)
\(I\)
\(=\displaystyle \int \frac{2(1+\sin \theta)^2}{\sqrt{1-\sin ^2 \theta}} \cdot \cos \theta \, d \theta\)
\(=2 \displaystyle \int \frac{1+2 \sin \theta+\sin ^2 \theta}{\cos \theta} \cdot \cos \theta \, d \theta\)
\(=2 \displaystyle \int 1+2 \sin \theta+\frac{1}{2}(1-\cos (2 \theta)) \, d \theta\)
\(=\displaystyle \int 2+4 \sin \theta+1-\cos (2 \theta) \, d \theta\)
\(=\displaystyle \int 3+4 \sin \theta-\cos (2 \theta) \, d \theta\)
\(=3 \theta-4 \cos \theta-\dfrac{1}{2} \sin (2 \theta)+c\)
\(=3 \theta-4 \cos \theta-\sin \theta \cos \theta+c\)
Calculus, EXT2 C1 2024 HSC 15d
Using a suitable substitution, find \(\displaystyle\int \dfrac{2 x^2}{\sqrt{2 x-x^2}}\, d x\). (3 marks) --- 5 WORK AREA LINES (style=lined) ---