SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, SPEC2 2024 VCAA 2

  1. Express the relation  \(\abs{z-z_1}=\abs{z-z_2}\)  in the form  \(y=m x+c\), where  \(x, y, m, c \in R\), \(z=x+i y, \ z_1=1+2 i\)  and  \(z_2=4\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. The line segment from  \(z_1=1+2 i\)  to  \(z_2=4\)  is the diameter of a circle.
  3. Find the equation of this circle in the form \(\abs{z-z_c}=r\), where \(z_c\) is the centre of the circle and \(r\) is the radius.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. A second circle is given by  \(\abs{z-(1+2 i)}=2\).
  5. Sketch this circle on the Argand diagram below, labelling the imaginary axis intercepts with their values.  (2 marks)
     

     

--- 2 WORK AREA LINES (style=lined) ---

  1. A ray originating at the point  \(z=2-i\)  passes through the point  \(z=-2+3 i\),  cutting the second circle into two segments.
    1. Sketch the ray on the Argand diagram provided in part c.  (1 mark)

      --- 0 WORK AREA LINES (style=lined) ---

    2. Find the equation of the ray in the form \(\operatorname{Arg}\left(z-z_0\right)=\theta\)  where  \(z_0 \in C\) and \(\theta\) is measured in radians in terms of \(\pi\).  (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment formed by the intersection of the ray and the circle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(y=\dfrac{3}{2} x-\dfrac{11}{4}\)

b.    \(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)

c.    

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

e.   \(A=\pi-2\)

Show Worked Solution

a.    \(\text{Method 1}\)

\(z_1=1+2i, \quad z_2=4\)

\(\abs{z-z_1}=\abs{z-z_2}\)

\(\text{Equation can be written:}\)

\((x-1)^2+(y-2)^2\) \(=(x-4)^2+y^2\)
\(-2x-4y+5\) \(=-8x+16 \ \ \ \text{(all squares cancel)}\)
\(6x+4y\) \(=11\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 
\(\text{Method 2}\)

\(\text {Find line of points equidistant from \(\ z_1\)  and  \(z_2\)}\)

\(m_{\text{line}\ z_1 z_2}=\dfrac{0-2}{4-1}=\dfrac{-2}{3}\)

\(m_{\perp}=\dfrac{3}{2}\)

\(\text{Mid point} \  z_1 z_2 =\dfrac{5+2i}{2}=\left(\dfrac{5}{2},1\right)\)

\(\perp \ \text{bisector:} \ m=\dfrac{3}{2}, \ \text{passes through} \ \left(\dfrac{5}{2}, 1\right)\)

\(y-1\) \(=\dfrac{3}{2}\left(x-\dfrac{5}{2}\right)\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 

b.    \(\text{Centre of circle }=\text {midpoint}\left(z_1 z_2\right)\)

\(z_c=\dfrac{z_1+z_2}{2}=\dfrac{5+2 i}{2}=\dfrac{5}{2}+i\)
 

\(\text{Radius}(r)=\dfrac{1}{2} \times \text{diameter}\)

\(r=\dfrac{1}{2} \sqrt{(4-1)^2+(0-2)^2}=\dfrac{\sqrt{13}}{2}\)
 

\(\text{Circle equation:}\)

\(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)
 

c.    \(\text{Find \(y\)-axis intercepts \((z=y i)\):}\)

\(4=\abs{z-(1+2i)}^2=\abs{yi-(1+2i)}^2=(-1)^2+(y-2)^2\)

\(y^2-4y+1=0 \ \Rightarrow \ =2 \pm \sqrt{3}\)
 

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

Mean mark (d.ii.) 56%.

e.    \(\text{Circle radius}=2\)

\(\text{Angle subtending minor segment}=\dfrac{\pi}{2}\)

\(A=\dfrac{r^2}{2}(\theta-\sin \theta)=2\left(\dfrac{\pi}{2}-1\right)=\pi-2\)

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2022 VCAA 6 MC

Given  `z=x+yi`, where `x, y \in R` and `z \in C`, an equation that has a graph that has two points of intersection with the graph given by  `|z-5|=2`  is

  1. `\text{Arg}(z-3)=\frac{\pi}{2}`
  2. `|z-1|=2`
  3. `\text{Im}(z)=2`
  4. `\text{Re}(z)+\text{Im}(z)=2`
  5. `|z-5-5 i|=4`
Show Answers Only

`E`

Show Worked Solution

`text{Using CAS, sketch all graphs together with the circle}\ |z-5|=2`

`|z-5-5 i|=4\ \ text{has 2 points of intersection.}`

`=>E`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Complex Numbers, SPEC2 2021 VCAA 2

The polynomial  `p(z) = z^3 + alpha z^2 + beta z + gamma`, where  `z ∈ C`  and  `alpha, beta, gamma ∈ R`, can also be written as  `p(z) = (z-z_1)(z-z_2)(z-z_3)`, where  `z_1 ∈ R`  and  `z_2, z_3 ∈ C`.

  1.  i. State the relationship between `z_2` and `z_3`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. ii. Determine the values of `alpha, beta` and `gamma`, given that  `p(2) = -13, |z_2 + z_3| = 0`  and  `|z_2-z_3| = 6`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Consider the point  `z_4 = sqrt3 + i`.

  1. Sketch the ray given by  `text(Arg)(z-z_4) = (5pi)/6`  on the Argand diagram below.  (2 marks)
     
  2. The ray  `text(Arg)(z-z_4) = (5pi)/6`  intersects the circle  `|z-3i| = 1`, dividing it into a major and a minor segment.
  3.  i. Sketch the circle  `|z-3i| = 1` on the Argand diagram in part b.  (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  4. ii. Find the area of the minor segment.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `z_2 = barz_3`
    2. `alpha = -3, beta = 9, gamma = -27`
  1.  
     

     

c.i.   

c.ii.   `(2pi-3sqrt3)/12\ text(u²)`

Show Worked Solution

a.i.   `text(By conjugate root theory)`

`z_2 = barz_3`

 

a.ii.   `text(Let)\ \ z_1 = a + bi, \ z_2 = a-bi`

♦♦ Mean mark part (a.ii.) 35%.

`|z_2 + z_3| = |2a| = 0 \ => \ a = 0`

`|z_2-z_3| = |2b| = 6 \ => \ b = ±3`
 

`text(Using)\ \ p(2) = -13`

`(2-z_1)(2-3i)(2 + 3i)` `= -13`
`(2-z_1)(4 + 9)` `= -13`
`2-z_1` `= -1`
`z_1` `= 3`

 

`p(z)` `= (z-3)(z-3i)(z + 3i)`
  `= (z-3)(z^2 + 9)`
  `= z^3-3z^2 + 9z-27`

 
`:. alpha = –3, \ beta = 9, \ gamma = –27`

♦ Mean mark part (b) 45%.
MARKER’S COMMENT: Point of emanation is not part of required ray (see open circle).

 

b. 

 

c.i.  

 

c.ii.   `text(Arg)(z-z_4) = (5pi)/6\ \ text(cuts)\ \ ytext(-axis at angle)\ pi/3`

♦♦ Mean mark part (c.ii.) 30%.

`=>\ text(angle at centre of segment) = pi/3\ (text(equilateral triangle))`

`text(Area)` `= (pi/3)/(2pi) xx pi xx 1^2-1/2 xx 1 xx 1 xx sin (pi/3)`
  `= pi/6-sqrt3/4`
  `= (2pi-3sqrt3)/12\ text(u²)`

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-10-Circles, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2021 VCAA 5 MC

The graph of the circle given by  `|z - 2 - sqrt3i| = 1`, where  `z ∈ C`, is shown below.
 


 

For points on this circle, the maximum value of  `|z|`  is

  1. `sqrt3 + 1`
  2. `3`
  3. `sqrt13`
  4. `sqrt7 + 1`
  5. `8`
Show Answers Only

`D`

Show Worked Solution
♦ Mean mark part 42%.

`text(Centre of circle at)\ (2, sqrt3)`

`text(Radius = 1)`

`text(By Pythagoras, line from)`

`text(origin to centre of circle)`

`d = sqrt(2^2 + sqrt(3)^2) = sqrt7`

`:. |z|\ text(max) = sqrt7 + 1`

`=>\ D`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 5, smc-1173-10-Circles

Complex Numbers, SPEC2 2020 VCAA 2

Two complex numbers, `u` and `v`, are defined as  `u = -2-i`  and  `v = −4-3i`.

  1. Express the relation  `|z-u| = |z-v|`  in the cartesian form  `y = mx + c`, where  `m, c ∈ R`.   (3 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Plot the points that represent `u` and `v` and the relation `|z-u| = |z-v|` on the Argand diagram below.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     
         
     

  3. State a geometrical interpretation of the graph of  `|z-u| = |z-v|`  in relation to the points that represent `u` and `v`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4.  i. Sketch the ray given by  `text(Arg)(z-u) = pi/4`  on the Argand diagram in part b.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  5. ii. Write down the function that describes the ray  `text(Arg)(z-u) = pi/4`, giving the rule in cartesian form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  6. The points representing `u` and `v` and  `−5i`  lie on the circle given by  `|z-z_c| = r`, where `z_c` is the centre of the circle and `r` is the radius.
  7. Find `z_c` in the form  `a + ib`, where  `a, b ∈ R`, and find the radius `r`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y = −x-5`
  2.  
  3. `|z-u| = |z-v|\ text(is the perpendicular bisector of the line joining)\ u and v.`
  4.  i.
  5. ii. `f: (−2, ∞) ->, f(x) = x + 1`
  6. `z_c = −5/3-10/3 i and r = (5sqrt2)/3`
Show Worked Solution

a.   `text(Let)\ \ z = x + iy`

`z-u = x + 2 + iy + i`

`z-v = x + 4 + iy + 3i`

`|z-u| = |z-v|`

`(x + 2)^2 + (y + 1)^2` `= (x + 4)^2 + (y + 3)^2`
`x^2 + 4x + 4 + y^2 + 2y + 1` `= x^2 + 8x + 16 + y^2 + 6y + 9`
`-4y` `= 4x + 20`
`y` `= −x-5`

 

b.   

 

c.   `|z-u| = |z-v|\ text(is the graph of the perpendicular bisector of the)`

`text(line joining)\ u and v.`

 

d.i.   

♦♦ Mean mark (d.ii.) 25%.

 

d.ii.   `text(Arg)(z-u) = pi/4 =>\ text(gradient) = 1, ytext(-intercept at)\ (0, 1)`

`:. f: (−2, ∞) -> RR, \ f(x) = x + 1`

 

e.   `|z_c-u| = |z_c-v| = |z_c-(−5i)|`

♦ Mean mark (e) 40%.
`z_c-u` `= (a + 2) + (b + 1)i`
`z_c-v` `= (a + 4) + (b + 3)i`
`z_c +5i` `= a + (b + 5)i`

 
`a^2 + (b + 5)^2 = (a + 2)^2 + (b + 1)^2\ …\ (1)`

`a^2 + (b + 5)^2 = (a + 4)^2 + (b + 3)^2\ …\ (2)`

`a = −5/3, b = −10/3\ \ text{(by CAS)}`
 

`:.z_c = −5/3-10/3 i`

`:.r` `= |z_c-(−5i)|`
  `= sqrt((−5/3)^2 + (−10/3 + 5)^2)`
  `= (5sqrt2)/3`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, Band 5, smc-1173-10-Circles, smc-1173-40-Linear

Complex Numbers, SPEC2-NHT 2019 VCAA 5 MC

The circle defined by  `|z + a| = 3 |z + i|`, where  `a ∈ R`, has a centre and radius respectively given by

  1. `(a/8, −9/8), \ 3/8sqrt(a^2 + 1)`
  2. `(a/8, −9/8), \ (9a^2 + 9)/64`
  3. `(a/8, −9/8), \ 1/8sqrt(153 - 7a^2)`
  4. `(−a/8, 9/8), \ (9a^2 + 9)/64`
  5. `(−a/8, 9/8), \ 3/8sqrt(a^2 + 1)`
Show Answers Only

`A`

Show Worked Solution
`|z + a|` `= 3|z + i|`
`|(x + a) + yi|` `= 3|x + (y + 1)i|`
`sqrt((x + a)^2 + y^2)` `= 3sqrt(x^2 + (y + 1)^2)`
`x^2 + 2ax + a^2 + y^2` `= 9(x^2 + y^2 + 2y + 1)`
`8x^2 – 2ax + 8y^2 + 18y` `= a^2 – 9`
`8(x^2 – a/4x + (a^2)/64) + 8(y^2 + 9/4y + 81/64)` `= a^2 – 9 + (a^2)/8 + 81/8`
`(x – a/8)^2 + (y + 9/8)^2` `= (9a^2)/64 + 9/64`
  `= 9/64(a^2 + 1)`

 
`:. text(Centre)\ (a/8, −9/8),\ text(radius) = 3/8sqrt(a^2 + 1)`

`=>\ A`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 5, smc-1173-10-Circles

Complex Numbers, SPEC2 2019 VCAA 2

  1. Show that the solutions of  `2z^2 + 4z + 5 = 0`, where  `z ∈ C`, are  `z = −1 ± sqrt6/2 i`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Plot the solutions of  `2z^2 + 4z + 5 = 0`  on the Argand diagram below.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

     

     

Let  `|z + m| = n`, where  `m, n ∈ R`, represent the circle of minimum radius that passes through the solutions of  `2z^2 + 4z + 5 = 0`.

    1. Find  `m`  and  `n`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

    2. Find the cartesian equation of the circle  `|z + m| = n`.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    3. Sketch the circle on the Argand diagram in part a.ii. Intercepts with the coordinate axes do not need to be calculated or labelled.   (1 mark)

      --- 0 WORK AREA LINES (style=lined) ---

  1. Find all values of  `d`, where  `d ∈ R`, for which the solutions of  `2z^2 + 4z + d = 0`  satisfy the relation  `|z + m| <= n`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. All complex solutions of  `az^2 + bz + c = 0`  have non-zero real and imaginary parts.

     

    Let  `|z + p| = q`  represent the circle of minimum radius in the complex plane that passes through these solutions, where  `a, b, c, p, q ∈ R`.

     

    Find  `p`  and  `q`  in terms of  `a, b`  and  `c`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2.   
  3. `m = 1, n = sqrt6/2`
  4. `(x + 1)^2 + y^2 = 3/2`
  5. `−1 <= d <= 5\ \ (text(by CAS))`
  6. `p = b/(2a), \ q = |sqrt(b^2-4ac)/(2a)|`
Show Worked Solution
a.i.    `z` `= (−b ± sqrt(b^2-4ac))/(2a)`
    `= (−4 ± sqrt(16-4 · 2 · 5))/(4)`
    `= (−4 ± 2sqrt6 i)/(4)`
    `= −1 ± sqrt6/2 i\ \ …\ text(as required)`

 

a.ii.   

 

b.i.   `text(Radius of circle = )sqrt6/2`

 `text(Centre) = (0, −1)`

`:. m = 1, \ n = sqrt6/2`

 

b.ii.    `|z + 1|` `= sqrt6/2`
  `|x + iy + 1|` `= sqrt6/2`
  `(x + 1)^2 + y^2` `= 3/2`

 

b.iii.   

 

c.   `text(Solve:)\ 2z^2 + 4z + d = 0`

`z = −1 ± sqrt(4-2d)/2 = −1 ± sqrt((2-d)/2)`

`z + 1 = ± sqrt((2-d)/2)`
 

`text(Solve for)\ d\ text(such that:)`

`|sqrt((2-d)/2)| <= sqrt6/2`

`−1 <= d <= 5\ \ (text(by CAS))`

 

d.   `z = (−b ± sqrt(b^2-4ac))/(2a) = (−b)/(2a) ± sqrt(b^2-4ac)/(2a)`

`z + b/(2a)` `= ± sqrt(b^2-4ac)/(2a)`
`|z + b/(2a)|` `= |sqrt(b^2-4ac)/(2a)|`

 
`:. p = b/(2a), \ q = |sqrt(b^2-4ac)/(2a)|`

Filed Under: Factors and Roots (SM), Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, Band 6, smc-1172-10-Quadratic roots, smc-1172-60-Sketch solutions, smc-1173-10-Circles

Complex Numbers, SPEC2 2011 VCAA 7 MC

In the complex plane, the circle with equation  `|\ z - (2 + 3i)\ | = 1`  is intersected exactly twice by the curve with equation

A.   `|\ z - 3i\ | = 1`

B.   `|\ z + 3\ | = |\ z - 3i\ |`

C.   `|\ z - 3\ | = |\ z - 3i\ |`

D.   `text(Im)(z) = 4`

E.   `text(Re)(z) = 3`

Show Answers Only

`C`

Show Worked Solution

`text(Consider option C:)`

`|z – 3| = |z – 3i|`

`=> y = x\ text{(perpendicular bisector}`

`text{between (3, 0) and (0, 3)}`
 

`=> C`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles, smc-1173-40-Linear

Complex Numbers, SPEC2 2013 VCAA 5 MC

The region in the complex plane that is outside the circle of radius `b` centred at the origin is given by the set of points `z`, where  `z ∈ C`, such that

A.   `|\ z\ | < b`

B.   `|\ z\ | > b`

C.   `|\ z\ | > b^2`

D.   `|\ z\ | = b`

E.   `|\ z\ | < b^2`

Show Answers Only

`B`

Show Worked Solution

`text(Circle:)\ |z| = b`

`text(Outside:)\ |z| > b`

`=> B`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Complex Numbers, SPEC2-NHT 2018 VCAA 2

In the complex plane, `L` is the line given by  `|z + 1| = |z + 1/2-sqrt 3/2 i|`.

  1. Show that the cartesian equation of `L` is given by  `y = -1/sqrt 3 x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Find the point(s) of intersection of `L` and the graph of the relation  `z bar z = 4`  in cartesian form.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch `L` and the graph of the relation  `z bar z = 4`  on the Argand diagram below.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

 

 

The part of the line `L` in the fourth quadrant can be expressed in the form  `text(Arg)(z) = a`.

  1. State the value of `a`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find the area enclosed by `L` and the graphs of the relations  `z bar z = 4, \ text(Arg)(z) = pi/3`  and  `text(Re)(z) = sqrt 3`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The straight line `L` can be written in the form `z = k bar z`, where  `k in C`.

     

    Find `k` in the form  `r text(cis)(theta)`, where  `theta`  is the principal argument of `k`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `z = sqrt 3-i, quad -sqrt 3 + i`
  3. `text(See Worked Solutions)`
  4. `a = -pi/6`
  5. `pi/3 + sqrt 3`
  6. `k = cis (-pi/3)`
Show Worked Solution

a.   `(x + 1)^2 + y^2 = (x + 1/2)^2 + (y-sqrt 3/2)^2`

`x^2 + 2x + 1 + y^2 = x^2 + x + 1/4 + y^2-y sqrt 3 + 3/4`

`0` `=-x-y sqrt 3`
`y sqrt 3` `= -x`
`:. y` `= -1/sqrt 3 x`

 

b.   `(x + iy) (x-iy)` `=4`
  `x^2-i^2 y^2` `=4`
  `x^2 + y^2` `=4`

 

`text(Substitute)\ \ y = -1/sqrt 3 x\ \ text(into)\ \  x^2 + y^2 = 4:`

`x^2 + 1/3 x ^2` `=4`
`4/3 x^2` `=4`
`x^2` `=3`
`x` `=+- sqrt3`
`=>y` `= +- 1`

 

`:.\ text(Intersection at):\  (sqrt 3, -1), quad (-sqrt 3, 1)`

 

c.   

 

d.   `alpha = tan^(-1) (-1/sqrt 3), quad alpha in (-pi/2, 0)`

`alpha = -pi/6`
 

e.   

`text(Total Area)`

`=\ text(Area of sector + Area of triangle)`

`=pi xx 2^2 xx ((pi/3-pi/6)/(2 pi)) + 1/2 xx sqrt 3 xx 2`

`=4 pi (1/12) + sqrt3`

`=pi/3 + sqrt3\ \ text(u²)`

 

f.    `r\ text(cis)(theta)` `=k (r\ text(cis)(-theta))`
  `:. k` `=(r\ text(cis)(theta))/(r\ text(cis)(-theta))`
    `= text(cis)(2 xx ((-pi)/6))`
    `= text(cis)(- pi/3)`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-1173-40-Linear

Complex Numbers, SPEC2-NHT 2017 VCAA 2 MC

The equation  `x^2 + y^2 + 2ky + 4 = 0`, where `k` is a real constant, will represent a circle only if

  1. `k > 2`
  2. `k < -2`
  3. `k != +- 2`
  4. `k < -2 \ or\  k > 2`
  5. `-2 < k < 2`
Show Answers Only

`D`

Show Worked Solution
`x^2 + y^2 + 2ky + k^2 – k^2 + 4` `= 0`
`x^2 + (y + k)^2` `= k^2 – 4`

 

`k^2-4` `>0`  
`k^2` `>4`  

 
`:. k < -2 \ uu\  k > 2`

`=>   D`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Complex Numbers, SPEC2 2015 VCAA 8 MC

A relation that does not represent a circle in the complex plane is

  1. `zbarz = 4`
  2. `|\ z + 3i\ | = 2|\ z − i\|`
  3. `|\ z − i\ | = |\ z + 2\ |`
  4. `|\ z − 1 + i\ | = 4`
  5. `|\ z\ | + 2|\ barz\ | = 4`
Show Answers Only

`C`

Show Worked Solution

`text(Consider each option:)`

`A:` `(x + iy)(x – iy)` `= 4`
  `x^2 + y^2` `= 4\ \ \ \ (text{circle equation)}`

 

`B:\ x^2+ (y + 3)^2=4(x^2 + (y – 1)^2)`

`x^2 + y^2 + 6y + 9` `= 4x^2 + 4y^2 – 8y + 4`
`3x^2 + 3y^2 – 14y -5` `=0\ \ \ \ (text{circle equation)}`

 

`C:` `x^2 + (y – 1)^2` `= (x + 2)^2 + y^2`
  `x^2 + y^2 – 2y + 1` `= x^2 + 4x + 4 + y^2`
  `4x+2y+3` `=0 \ \ \ \ (text{not a circle equation)}`

 
`text(Similarly, D and E can be shown to represent circle equations.)`

`=> C`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Complex Numbers, SPEC2 2018 VCAA 2

  1. State the centre in the form  `(x, y)`, where  `x, y in R`, and the state the radius of the circle given by  `|z-(1 + 2i)| = 2`, where  `z in C`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Graph the circle given by  `|z + 1| = sqrt 2 |z-i|`  on the Argand diagram below, labelling the intercepts with the vertical axis.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

The line given by  `|z-1| = |z-3|`  intersects the circle given by  `|z + 1| = sqrt 2 |z-i|`  in two places.

  1. Draw the line given by  `|z-1| = |z-3|`  on the Argand diagram in part c. Label the points of intersection with their coordinates.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment enclosed by an arc of the circle given by  `|z + 1| = sqrt 2 |z-i|`  and part of the line given by  `|z-1| = |z-3|`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Centre): (1, 2), quad text(radius): 2`
  2. `text(Proof)\ text{(See Worked Solutions)}`
  3. `text(See Worked Solutions)`
  4. `text(See Worked Solutions)`
  5. `(4 pi)/3-sqrt 3`
Show Worked Solution

a.   `(x-1)^2 + (y-2)^2 = 2^2`

`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`
 

b.    `y^2 + (x + 1)^2` `= (sqrt 2)^2 (x^2 + (y-1)^2)`
  `y^2 + x^2 + 2x + 1` `= 2(x^2 + y^2-2y + 1)`
  `y^2 + x^2 + 2x + 1` `= 2x^2 + 2y^2-4y + 2`
`0` `= 2x^2 + 2y^2-4y + 2-y^2-x^2-2x-1`
`0` `= x^2 + y^2-4y-2x + 1`
`0` `= (x^2-2x + 1) + (y^2-4y)`
`0` `= (x-1)^2 + (y^2-4y + 2^2)-4`
`0` `= (x-1)^2 + (y-2)^2-4`
`4` `= (x-1)^2 + (y-2)^2`

 
`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`

 

c.   `ytext(-axis intercepts occur when)\ \ x=0:`

`(0-1)^2 + (y-2)^2` `= 4`
`1 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

d.   `|z-1| = |z-3|`

`=>\ text(Graph is a line equidistant from:)\ \ 1 + 0i and 3 + 0i`

`text(Circle intercepts occur when)\ \ x=2:`

`(2- 1)^2 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

e.   `sin theta = sqrt3/2\ \ =>\ \ theta = pi/3`

♦ Mean mark 39%.
MARKER’S COMMENT: Students who used standard formulae rather than definite integrals were more successful.

`text(Angle at centre of segment) = (2pi)/3`

`text(Height of triangle)\ (h) = 2^2-(sqrt3)^2 =1`
 

`:.\ text(Shaded Area)`

`=\ text(Area of segment – Area of triangle)`

`=((2pi)/3)/(2pi) xx pi xx 2^2-1/2 xx 2sqrt3 xx 1`

`=(4pi)/3-sqrt3`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions

Complex Numbers, SPEC2 2014 VCAA 9 MC

The circle  `| z - 3 - 2i | = 2`  is intersected exactly twice by the line given by

A.   `| z - i | = | z + 1 |`

B.   `| z - 3 - 2i | = | z - 5 |`

C.   `| z - 3 - 2i | = | z - 10i |`

D.   `text(Im)(z) = 0`

E.   `text(Re)(z) = 5`

Show Answers Only

`B`

Show Worked Solution

`text{Circle has centre (3,2) and radius 2.}`

`text{Consider each option (using CAS):}`

`text(Options A and C do not intersect.)`

`text(Options D and E are tangents.)`

`text(Only option B intersects twice).`

`=> B`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles, smc-1173-40-Linear

Complex Numbers, SPEC2-NHT 2018 VCAA 5 MC

Which one of the following graphs shows the set of points in the complex plane specified by the relation

`{z : (z + 2) (bar z + 2) = 4, \ z in C}`?

A. B.
C. D.
E.

 

Show Answers Only

`B`

Show Worked Solution
`(z + 2) (bar z + 2)` `=4`
`((x + 2) + iy)((x + 2) – iy)` `= 4`
`(x + 2)^2 – i^2 y^2` `= 4`
`(x + 2)^2 + y^2` `= 4`

 
`=>   B`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, smc-1173-10-Circles

Complex Numbers, SPEC1-NHT 2018 VCAA 8

A circle in the complex plane is given by the relation  `|z-1-i| = 2, \ z in C`.

  1. Sketch the circle on the Argand diagram below.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

 

  1. i.  Write the equation of the circle in the form  `(x-a)^2 + (y-b)^2 = c`  and show that the gradient of a tangent to the circle can be expressed as  `(dy)/(dx) = (1-x)/(y-1)`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. ii. Find the gradient of the tangent to the circle where  `x = 2`  in the first quadrant of the complex plane.   (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find the equations of all rays that are perpendicular to the circle in the form  `text(Arg) (z) = alpha`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
    1.  `text(Proof)\ \ text{(See Worked Solutions)}`
    2. `(-1)/sqrt 3`
  2. `text(Arg) (z) = pi/4; quad text(Arg) (z) = (-3 pi)/4`
Show Worked Solution
a.  

 

b.i.   `(x-1)^2 + (y-1)^2` `= 4`
  `2(x-1) + d/(dx) ((y-1)^2)` `= 0`
  `2(x-1) + 2(y-1)*(dy)/(dx)` `= 0`
  `2 (y-1)*(dy)/(dx)` `= -2(x-1)`
  `(dy)/(dx)` `= (-(x-1))/(y-1)`
    `= (1-x)/(y-1)`

 

b.ii.   `(2-1)^2 + (y-1)^2` `= 4`
  `1 + (y-1)^2` `= 4`
  `(y-1)^2` `= 3`
  `y` `= 1 + sqrt 3\ \ \ (y > 0)`
     
  `(dy)/(dx)|_{(2, 1 + sqrt 3)}` `= (1-2)/(1 + sqrt 3-1`
    `= (-1)/sqrt 3`

 

c.   `P (0, 0) quad C(1, 1)`
  `-> y = x`
  `:. alpha = pi/4, quad (-3 pi)/4` 

 
`text(Arg) (z) = pi/4`

`text(Arg) (z) = (-3 pi)/4`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, smc-1173-10-Circles, smc-1173-30-Sketch regions

Copyright © 2014–2025 SmarterEd.com.au · Log in