SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Complex Numbers, SPEC2 2024 VCAA 2

  1. Express the relation  \(\abs{z-z_1}=\abs{z-z_2}\)  in the form  \(y=m x+c\), where  \(x, y, m, c \in R\), \(z=x+i y, \ z_1=1+2 i\)  and  \(z_2=4\).   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. The line segment from  \(z_1=1+2 i\)  to  \(z_2=4\)  is the diameter of a circle.
  3. Find the equation of this circle in the form \(\abs{z-z_c}=r\), where \(z_c\) is the centre of the circle and \(r\) is the radius.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. A second circle is given by  \(\abs{z-(1+2 i)}=2\).
  5. Sketch this circle on the Argand diagram below, labelling the imaginary axis intercepts with their values.  (2 marks)
     

     

--- 2 WORK AREA LINES (style=lined) ---

  1. A ray originating at the point  \(z=2-i\)  passes through the point  \(z=-2+3 i\),  cutting the second circle into two segments.
    1. Sketch the ray on the Argand diagram provided in part c.  (1 mark)

      --- 0 WORK AREA LINES (style=lined) ---

    2. Find the equation of the ray in the form \(\operatorname{Arg}\left(z-z_0\right)=\theta\)  where  \(z_0 \in C\) and \(\theta\) is measured in radians in terms of \(\pi\).  (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment formed by the intersection of the ray and the circle.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(y=\dfrac{3}{2} x-\dfrac{11}{4}\)

b.    \(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)

c.    

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

e.   \(A=\pi-2\)

Show Worked Solution

a.    \(\text{Method 1}\)

\(z_1=1+2i, \quad z_2=4\)

\(\abs{z-z_1}=\abs{z-z_2}\)

\(\text{Equation can be written:}\)

\((x-1)^2+(y-2)^2\) \(=(x-4)^2+y^2\)
\(-2x-4y+5\) \(=-8x+16 \ \ \ \text{(all squares cancel)}\)
\(6x+4y\) \(=11\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 
\(\text{Method 2}\)

\(\text {Find line of points equidistant from \(\ z_1\)  and  \(z_2\)}\)

\(m_{\text{line}\ z_1 z_2}=\dfrac{0-2}{4-1}=\dfrac{-2}{3}\)

\(m_{\perp}=\dfrac{3}{2}\)

\(\text{Mid point} \  z_1 z_2 =\dfrac{5+2i}{2}=\left(\dfrac{5}{2},1\right)\)

\(\perp \ \text{bisector:} \ m=\dfrac{3}{2}, \ \text{passes through} \ \left(\dfrac{5}{2}, 1\right)\)

\(y-1\) \(=\dfrac{3}{2}\left(x-\dfrac{5}{2}\right)\)
\(y\) \(=\dfrac{3}{2} x-\dfrac{11}{4}\)

 

b.    \(\text{Centre of circle }=\text {midpoint}\left(z_1 z_2\right)\)

\(z_c=\dfrac{z_1+z_2}{2}=\dfrac{5+2 i}{2}=\dfrac{5}{2}+i\)
 

\(\text{Radius}(r)=\dfrac{1}{2} \times \text{diameter}\)

\(r=\dfrac{1}{2} \sqrt{(4-1)^2+(0-2)^2}=\dfrac{\sqrt{13}}{2}\)
 

\(\text{Circle equation:}\)

\(\abs{z-\left(\dfrac{5}{2}+i\right)} = \dfrac{\sqrt{13}}{2}\)
 

c.    \(\text{Find \(y\)-axis intercepts \((z=y i)\):}\)

\(4=\abs{z-(1+2i)}^2=\abs{yi-(1+2i)}^2=(-1)^2+(y-2)^2\)

\(y^2-4y+1=0 \ \Rightarrow \ =2 \pm \sqrt{3}\)
 

d.i.    \(\text{See image above}\)

d.ii.   \(\operatorname{Arg}(z-2+i)=\dfrac{3 \pi}{4}\)

Mean mark (d.ii.) 56%.

e.    \(\text{Circle radius}=2\)

\(\text{Angle subtending minor segment}=\dfrac{\pi}{2}\)

\(A=\dfrac{r^2}{2}(\theta-\sin \theta)=2\left(\dfrac{\pi}{2}-1\right)=\pi-2\)

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2-NHT 2019 VCAA 1

In the complex plane, `L` is the with equation `|z + 2| = |z-1-sqrt3 i|`.

  1.  Verify that the point (0, 0) lies on `L`.   (1 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  The line  `L`  can also be expressed in the form  `|z-1| = |z-z_1|`, where  `z_1 ∈ C`.

     

     Find  `z_1` in cartesian form.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3.  Find, in cartesian form, the points(s) of intersection of  `L`  and the graph of  `|z| = 4`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4.  Sketch  `L`  and the graph of  `|z| = 4`  on the Argand diagram below.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     
     
         
     

  5.  Find the area of the sector defined by the part of  `L`  where  `text(Re)(z) ≥ 0`, the graph of  `|z| = 4`  where  `text(Re)(z) ≥ 0`, and imaginary axis where  `text(Im)(z) > 0`.   (1 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof(See Worked Solution))`
  2. `text(Proof(See Worked Solution))`
  3. `-(1)/(2)-(sqrt3)/(2) i`
  4. `(2,-2 sqrt3) text(and) (-2, 2 sqrt3)`
  5.  

     
  6. `(20pi)/(3)`
Show Worked Solution

a.   `text(Substitute)\ \ z = 0 + 0i\ \  text(into both sides:)`

`text(LHS) = |2| = 2`

`text(RHS) = |-1-sqrt3i| = sqrt{(-1)^2 + (-sqrt3)^2} = 2`

`:. (0,0)\ \ text(lies on both sides.)`

 

b.  `|x + yi + 2|` `= |x + yi-1-sqrt3 i|`
  `|(x + 2) + yi|` `= |(x-1) + (y-sqrt3) i|`
  `sqrt(x^2 + 4x + 4 + y^2` `= sqrt(x^2-2x + 1 + y^2 -2 sqrt3 y + 3`
  `x^2 + 4x + 4 + y^2` `= x^2-2x + 4-2 sqrt3 y + y^2`
  `6x` `= -2 sqrt3 y`
  `y` `= -(3)/(sqrt3) x`
  `y` `= -sqrt3 x`


c.

`m_text(perp) = (sqrt2)/(3) , text(through)\ (1, 0)`

`y = (sqrt3)/(3) (x-1)\ …\ L_1`

`text(Intersection) \ L\ text(and) \ L_1,`

`text(Solve:) \ (sqrt3)/3 (x-1) = -sqrt3 x\ \ \ text{(by CAS)}`

`=> x = (1)/(4) , y = -(sqrt3)/(4) \ \ \ text{(point}\ Ptext{)}`
 

`P(x_1,y_1) \ text(is midpoint of) \ \ z_1 \ text(and) \ \ (1, 0):`

`(x_1 + 1)/(2) = (1)/(4) \ => \ x_1 = -(1)/(2)`

`(y_1 + 0)/(2) = -sqrt3/(4) \ => \ y_1 = -sqrt3/(2)`

`:. \ z_1 = -(1)/(2)-(sqrt3)/(2) i`

 

d.   `|z| = 4 => \ text(circle, centre) \ (0,0), \ text(radius) = 4`

`x^2 + y^2 = 16\ …\ (1)`

`y =-sqrt3 x\ …\ (2)`

`text(Substitute)\ (2) \ text(into) \ (1)`

`x^2 + 3x^2 = 16`

`x = ±2`

`:. \ text(Intersection at)\ (2,-2 sqrt3) \ text(and) \ (-2, 2 sqrt3)`

 

e.


 

f.    

`text(Area)` `= (5)/(12) xx  pi xx 4^2`
  `= (20pi)/(3)`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-30-Sketch regions, smc-1173-40-Linear

Complex Numbers, SPEC2 2012 VCAA 2

  1.  Given that  `cos(pi/12) = (sqrt (sqrt 3 + 2))/2`, show that  `sin(pi/12) = (sqrt (2-sqrt 3))/2`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Express  `z_1 = (sqrt(sqrt3 + 2))/2 + i(sqrt(2-sqrt3))/2`  in polar form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. i.  Write down  `z_1^4`  in polar form.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. ii. On the Argand diagram below, shade the region defined by

`{z: text(Arg)(z_1) <= text(Arg)(z) <= text(Arg)(z_1^4)} ∩ {z: 1 <= |\ z\ | <= 2}, z ∈ C`.   (2 marks)

--- 0 WORK AREA LINES (style=lined) ---


 

  1.  Find the area of the shaded region in part c.   (2 marks) 

    --- 5 WORK AREA LINES (style=lined) ---

  2. i.  Find the value(s) of `n` such that  `text(Re)(z_1^n) = 0`, where  `z_1 = (sqrt(sqrt3 + 2))/2 + i(sqrt(2-sqrt3))/2`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. ii. Find  `z_1^n`  for the value(s) of `n` found in part i.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. i.  `z_1 = text(cis) pi/12`

     

    ii.  `z_1^4 = text(cis) pi/3`

  3. `text(See Worked Solutions.)`
  4. `(3pi)/8`
  5. i.  `n = (2k + 1)6`

     

    ii.  `z_1^n = ±i\ text(for)\ k ∈ Z`

Show Worked Solution
a.    `cos^2(pi/12) + sin^2(pi/12)` `= 1`
  `sin^2(pi/12)` `= 1-(sqrt 3 + 2)/4`
    `= (2-sqrt 3)/4`

 
`:. sin (pi/12) = sqrt(2-sqrt 3)/2,\ \ \ (sin (pi/12) > 0)`

 

b.i.    `z_1` `= cos(pi/12) + i sin (pi/12)`
    `= text(cis)(pi/12)`

 

b.ii.    `z_1^4` `= 1^4 text(cis) ((4 pi)/12)`
    `= text(cis)(pi/3)`

 

c.   

 

d.  `text(Area of large sector)`

Mean mark 51%.

`=theta/(2pi) xx pi r^2`

`=(pi/3-pi/12)/(2pi) xx pi xx 2^2`

`=pi/2`
  

`text(Area of small sector)`

`=1/2 xx pi/4 xx 1`

`=pi/8`

 
`:.\ text(Area shaded)`

`= pi/2-pi/8`

`= (3 pi)/8`
 

♦ Mean mark (e)(i) 34%.

e.i.    `z_1^n` `= 1^n text(cis) ((n pi)/12)`
  `text(Re)(z_1^n)` `= cos((n pi)/12) = 0`
  `(n pi)/12` `=cos^(-1)0 +2pik,\ \ \ k in ZZ`
  `(n pi)/12` `= pi/2 + k pi`
  `n` `= 6 + 12k,\ \ \ k in ZZ`

 

e.ii.  `text(When)\ \ n=(6 + 12k):`

♦ Mean mark (e)(ii) 36%.

  `z_1^n` `= 1^(6 + 12k) text(cis) (((6 + 12k)pi)/12), quad k in ZZ`
    `= i xx sin (((6 + 12k)pi)/12)`
    `= i xx sin (pi/2 + k pi)`

 
`text(If)\ \ k=0  or text(even,)\ \ z_1^n=i`

`text(If)\ \ k\ text(is odd,)\ \ z_1^n=-i`

`:. z_1^n = +-i,\ \ \ k in ZZ`

Filed Under: Geometry and Complex Numbers (SM), Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-30-Sketch regions, smc-2597-20-Cartesian to Mod/Arg, smc-2597-60-Argand diagrams

Complex Numbers, SPEC2 2017 VCAA 4

  1. Express  `−2-2sqrt3 i`  in polar form.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Show that the roots of  `z^2 + 4z + 16 = 0`  are  `z = −2-sqrt3 i`  and  `z = −2 + 2sqrt3 i`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Express the roots of  `z^2 + 4z + 16 = 0`  in terms of  `2-2sqrt3 i`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Show that the cartesian form of the relation  `|z| = |z-(2-2sqrt3 i)|`  is  `x-sqrt3 y-4 = 0`  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  5. Sketch the line represented by  `x-sqrt3y -4 = 0`  and plot the roots of  `z^2 + 4z + 16 = 0`  on the Argand diagram below.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     
       

  6. The equation of the line passing through the two roots of  `z^2 + 4z + 16 = 0`  can be expressed as  `|z-a| = |z-b|`, where  `a, b ∈ C`.

     

    Find `b` in terms of `a`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  7. Find the area of the major segment bounded by the line passing through the roots of  `z^2 + 4z + 16 = 0`  and the major arc of the circle given by  `|z| = 4`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4text(cis)((−2pi)/3)`
  2. `text(See Worked Solutions)`
  3. `−(2-2sqrt3 i) and-bar((2-2sqrt3 i))`
  4. `text(See Worked Solutions)`
  5.  
  6. `−4-bara`
  7. `4sqrt3 + (32pi)/3`
Show Worked Solution
a.    `r` `= sqrt((−2)^2 + (−2sqrt3)^2)=4`

 

`theta` `= −pi + tan^(−1)((2sqrt3)/2)`
  `= −pi + pi/3`
  `=(-2pi)/3`

 
`:. −2-2sqrt3 i = 4text(cis)((−2pi)/3)`
 

b.   `z^2 + 4z + z^2-4 + 16` `=0`
`(z + 2)^2 + 12` `= 0`
`(z + 2)^2` `= -12`
`(z + 2)^2` `= 12i^2`
`z + 2` `= ±sqrt12 i`
`z + 2` `= ±2sqrt3 i`
`:. z` `= -2 ± 2sqrt3 i`

 

♦♦ Mean mark part (c) 31%.

c.    `z_1` `= -2 + 2sqrt3 i = -(2-2sqrt3 i)`
  `z_2` `=-2-2sqrt3 i =-bar((2-2sqrt3 i))`

 

d. `|z|` `= |z-(2-2sqrt3 i)|`
     `x^2 + y^2` `= (x-2)^2 + (y + 2sqrt3)^2`
    `x^2 + y^2` `= x^2-4x + 4+ y^2 + 4sqrt3 y + 12`
  `0` `= −4x + 4sqrt3 y + 16`
  `0` `= −x + sqrt3 y + 4`

 
`:. x-sqrt3 y-4=0`

 

e.   

 

f.   `x = − 2\ \ text(is equidistant from)\ \ z_1 = a\ \ text(and)\ \ z_2 = b`

♦♦♦ Mean mark 1%!

`=> text(Im)(a) = text(Im)(a)`
 

`text(Let)\ \ a = alpha + betai, \ b = gamma + betaj`

`(alpha + gamma)/2` `= −2`
`alpha + gamma` `= −4`
`gamma` `= -4-alpha`

  

`:. b` `= -4-alpha + betaj`
  `= -4-(alpha + betaj)`
  `= -4-bara`

 

♦♦ Mean mark 31%.

g.    `text(Area)\ DeltaOAB` `= 1/2 xx (4sqrt3 xx 2)`
    `= 4sqrt3`

 

`text(Area of sector)\ AOB` `= pi xx 4^2 xx (2 xx pi/3)/(2pi)`
  `= (16pi)/3`

 
`:.\ text(Area of major segment area)`

`=pi(4)^2-((16pi)/3-4sqrt3)`

`= 4sqrt3 + (32pi)/3`

Filed Under: Factors and Roots (SM), Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, Band 6, smc-1172-10-Quadratic roots, smc-1172-60-Sketch solutions, smc-1173-30-Sketch regions, smc-1173-40-Linear

Complex Numbers, SPEC2-NHT 2018 VCAA 2

In the complex plane, `L` is the line given by  `|z + 1| = |z + 1/2-sqrt 3/2 i|`.

  1. Show that the cartesian equation of `L` is given by  `y = -1/sqrt 3 x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Find the point(s) of intersection of `L` and the graph of the relation  `z bar z = 4`  in cartesian form.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch `L` and the graph of the relation  `z bar z = 4`  on the Argand diagram below.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

 

 

The part of the line `L` in the fourth quadrant can be expressed in the form  `text(Arg)(z) = a`.

  1. State the value of `a`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find the area enclosed by `L` and the graphs of the relations  `z bar z = 4, \ text(Arg)(z) = pi/3`  and  `text(Re)(z) = sqrt 3`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The straight line `L` can be written in the form `z = k bar z`, where  `k in C`.

     

    Find `k` in the form  `r text(cis)(theta)`, where  `theta`  is the principal argument of `k`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `z = sqrt 3-i, quad -sqrt 3 + i`
  3. `text(See Worked Solutions)`
  4. `a = -pi/6`
  5. `pi/3 + sqrt 3`
  6. `k = cis (-pi/3)`
Show Worked Solution

a.   `(x + 1)^2 + y^2 = (x + 1/2)^2 + (y-sqrt 3/2)^2`

`x^2 + 2x + 1 + y^2 = x^2 + x + 1/4 + y^2-y sqrt 3 + 3/4`

`0` `=-x-y sqrt 3`
`y sqrt 3` `= -x`
`:. y` `= -1/sqrt 3 x`

 

b.   `(x + iy) (x-iy)` `=4`
  `x^2-i^2 y^2` `=4`
  `x^2 + y^2` `=4`

 

`text(Substitute)\ \ y = -1/sqrt 3 x\ \ text(into)\ \  x^2 + y^2 = 4:`

`x^2 + 1/3 x ^2` `=4`
`4/3 x^2` `=4`
`x^2` `=3`
`x` `=+- sqrt3`
`=>y` `= +- 1`

 

`:.\ text(Intersection at):\  (sqrt 3, -1), quad (-sqrt 3, 1)`

 

c.   

 

d.   `alpha = tan^(-1) (-1/sqrt 3), quad alpha in (-pi/2, 0)`

`alpha = -pi/6`
 

e.   

`text(Total Area)`

`=\ text(Area of sector + Area of triangle)`

`=pi xx 2^2 xx ((pi/3-pi/6)/(2 pi)) + 1/2 xx sqrt 3 xx 2`

`=4 pi (1/12) + sqrt3`

`=pi/3 + sqrt3\ \ text(u²)`

 

f.    `r\ text(cis)(theta)` `=k (r\ text(cis)(-theta))`
  `:. k` `=(r\ text(cis)(theta))/(r\ text(cis)(-theta))`
    `= text(cis)(2 xx ((-pi)/6))`
    `= text(cis)(- pi/3)`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-1173-40-Linear

Complex Numbers, SPEC2 2018 VCAA 2

  1. State the centre in the form  `(x, y)`, where  `x, y in R`, and the state the radius of the circle given by  `|z-(1 + 2i)| = 2`, where  `z in C`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Graph the circle given by  `|z + 1| = sqrt 2 |z-i|`  on the Argand diagram below, labelling the intercepts with the vertical axis.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

The line given by  `|z-1| = |z-3|`  intersects the circle given by  `|z + 1| = sqrt 2 |z-i|`  in two places.

  1. Draw the line given by  `|z-1| = |z-3|`  on the Argand diagram in part c. Label the points of intersection with their coordinates.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment enclosed by an arc of the circle given by  `|z + 1| = sqrt 2 |z-i|`  and part of the line given by  `|z-1| = |z-3|`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Centre): (1, 2), quad text(radius): 2`
  2. `text(Proof)\ text{(See Worked Solutions)}`
  3. `text(See Worked Solutions)`
  4. `text(See Worked Solutions)`
  5. `(4 pi)/3-sqrt 3`
Show Worked Solution

a.   `(x-1)^2 + (y-2)^2 = 2^2`

`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`
 

b.    `y^2 + (x + 1)^2` `= (sqrt 2)^2 (x^2 + (y-1)^2)`
  `y^2 + x^2 + 2x + 1` `= 2(x^2 + y^2-2y + 1)`
  `y^2 + x^2 + 2x + 1` `= 2x^2 + 2y^2-4y + 2`
`0` `= 2x^2 + 2y^2-4y + 2-y^2-x^2-2x-1`
`0` `= x^2 + y^2-4y-2x + 1`
`0` `= (x^2-2x + 1) + (y^2-4y)`
`0` `= (x-1)^2 + (y^2-4y + 2^2)-4`
`0` `= (x-1)^2 + (y-2)^2-4`
`4` `= (x-1)^2 + (y-2)^2`

 
`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`

 

c.   `ytext(-axis intercepts occur when)\ \ x=0:`

`(0-1)^2 + (y-2)^2` `= 4`
`1 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

d.   `|z-1| = |z-3|`

`=>\ text(Graph is a line equidistant from:)\ \ 1 + 0i and 3 + 0i`

`text(Circle intercepts occur when)\ \ x=2:`

`(2- 1)^2 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

e.   `sin theta = sqrt3/2\ \ =>\ \ theta = pi/3`

♦ Mean mark 39%.
MARKER’S COMMENT: Students who used standard formulae rather than definite integrals were more successful.

`text(Angle at centre of segment) = (2pi)/3`

`text(Height of triangle)\ (h) = 2^2-(sqrt3)^2 =1`
 

`:.\ text(Shaded Area)`

`=\ text(Area of segment – Area of triangle)`

`=((2pi)/3)/(2pi) xx pi xx 2^2-1/2 xx 2sqrt3 xx 1`

`=(4pi)/3-sqrt3`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions

Complex Numbers, SPEC1-NHT 2018 VCAA 8

A circle in the complex plane is given by the relation  `|z-1-i| = 2, \ z in C`.

  1. Sketch the circle on the Argand diagram below.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

 

  1. i.  Write the equation of the circle in the form  `(x-a)^2 + (y-b)^2 = c`  and show that the gradient of a tangent to the circle can be expressed as  `(dy)/(dx) = (1-x)/(y-1)`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. ii. Find the gradient of the tangent to the circle where  `x = 2`  in the first quadrant of the complex plane.   (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find the equations of all rays that are perpendicular to the circle in the form  `text(Arg) (z) = alpha`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
    1.  `text(Proof)\ \ text{(See Worked Solutions)}`
    2. `(-1)/sqrt 3`
  2. `text(Arg) (z) = pi/4; quad text(Arg) (z) = (-3 pi)/4`
Show Worked Solution
a.  

 

b.i.   `(x-1)^2 + (y-1)^2` `= 4`
  `2(x-1) + d/(dx) ((y-1)^2)` `= 0`
  `2(x-1) + 2(y-1)*(dy)/(dx)` `= 0`
  `2 (y-1)*(dy)/(dx)` `= -2(x-1)`
  `(dy)/(dx)` `= (-(x-1))/(y-1)`
    `= (1-x)/(y-1)`

 

b.ii.   `(2-1)^2 + (y-1)^2` `= 4`
  `1 + (y-1)^2` `= 4`
  `(y-1)^2` `= 3`
  `y` `= 1 + sqrt 3\ \ \ (y > 0)`
     
  `(dy)/(dx)|_{(2, 1 + sqrt 3)}` `= (1-2)/(1 + sqrt 3-1`
    `= (-1)/sqrt 3`

 

c.   `P (0, 0) quad C(1, 1)`
  `-> y = x`
  `:. alpha = pi/4, quad (-3 pi)/4` 

 
`text(Arg) (z) = pi/4`

`text(Arg) (z) = (-3 pi)/4`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, smc-1173-10-Circles, smc-1173-30-Sketch regions

Copyright © 2014–2025 SmarterEd.com.au · Log in