The area of the curved surface generated by revolving part of the curve with equation \(y=\cos ^{-1}(x)\) from \((0, \dfrac{\pi}{2})\) to \((1,0)\) about the \(y\)-axis can be found by evaluating
- \(2 \pi \displaystyle {\int_0^{\dfrac{\pi}{2}}\left(\cos ^{-1}(x) \sqrt{1+\dfrac{1}{x^2-1}}\right)} d x\)
- \(2 \pi \displaystyle {\int_0^1\left(\cos ^{-1}(x) \sqrt{1+\dfrac{1}{x^2-1}}\right)} d x\)
- \(2 \pi \displaystyle {\int_0^{\dfrac{\pi}{2}} \cos (y) \sqrt{1-\sin ^2(y)}} d y\)
- \(2 \pi \displaystyle {\int_0^{\dfrac{\pi}{2}} \sqrt{1+u^2} \ d u}\), where \(u=\sin (y)\)
- \(2 \pi \displaystyle {\int_0^1 \sqrt{1+u^2} \ d u } \), where \(u=\sin (y)\)