The total area enclosed between the `x`-axis and the graph of `f(x) = |x^3| - x^2 - |x|` is closest to
- −2.015
- −1.008
- 1.008
- 2.015
- 2.824
Aussie Maths & Science Teachers: Save your time with SmarterEd
The total area enclosed between the `x`-axis and the graph of `f(x) = |x^3| - x^2 - |x|` is closest to
`D`
`text(Graph)\ \ f(x) = |x^3| – x^2 – |x|\ \ \ (text(by CAS))`
`text(Intersection occurs at:)`
`x = 0, ±((1 + sqrt5)/2)`
`=>\ text(Function is even)`
`:.\ text(Area)` | `= −2int_0^(1 + sqrt5) f(x)\ dx\ \ (text(area is below axis))` |
`= 2.015` |
`=>\ D`
a. `text(Method 1:)`
`tan \ (5pi)/(12)` | `= tan ((pi)/(4) + (pi)/(6))` |
`= (tan \ (pi)/(4) + tan\ (pi)/(6))/(1 – tan \ (pi)/(4) · tan \ (pi)/(6))` | |
`= (1 + (1)/(sqrt3))/(1 – (1)/(sqrt3))` | |
`= (sqrt3+1)/(sqrt3-1) xx (sqrt3+1)/(sqrt3+1)` | |
`= (3+ 2 sqrt3 + 1)/(3 – 1)` | |
`= sqrt3 +2` |
`text(Method 2:)`
`tan \ (5pi)/(6)` | `= (2tan \ (5pi)/(12))/(1 – tan^2 \ (5pi)/(12))` |
`- 1/sqrt3` | `=(2tan \ (5pi)/(12))/(1 – tan^2 \ (5pi)/(12))` |
`-2 sqrt3 tan \ (5pi)/(12)` | `= 1 – tan^2 \ (5pi)/(12)` |
`tan^2 \ (5pi)/(12) – 2 sqrt(3) tan \ (5pi)/(12) – 1 = 0`
`tan \ (5pi)/(12)` | `= (2 sqrt3 ± sqrt(12 + 4))/(2)` |
`= sqrt3 + 2 \ \ \ (tan theta > 0)` |
b. `text(Area)` | `= int_0 ^(2 sqrt3 + 6) \ (2)/(x^2 – 4x + 8)\ dx` |
`= int_0 ^(2 sqrt3 + 6) \ (2)/((x -2)^2 + 2^2)` | |
`= [tan^-1 ((x – 2)/(2))]_0 ^(2 sqrt3 + 6)` | |
`= tan^-1 (sqrt3 + 2) – tan^-1 (-1)` | |
`= (5pi)/(12) – (-(pi)/(4))` | |
`= (2pi)/(3)` |
Let `f: R -> R,\ \ f(x) = x^2e^(-x^2)`.
Find the minimum distance between `M` and the point `(0, e)`, and the value of `m` for which this occurs, correct to three decimal places. (3 marks)
a. | `f^{\prime}(x)` | `= x^2 ⋅ -2x ⋅ e^(-x^2) + e^(-x^2) ⋅ 2x` |
`= 2x e^(-x^2) (1 – x^2)` |
b.i. | `f ^{″}(0) = 2 > 0\ \ \ text{(by CAS)}` |
`:.\ text(Local minimum)` |
b.ii. | `text(SP’s occur when)\ \ x = –1, 0, 1` |
`f(x)_max = 1/e\ \ text(when)\ \ x = –1 and 1` |
b.iii. | `f(x)_max + d` | `< 0` |
`d` | `< 1/e` |
c.i. | `text(At)\ \ x = –1, \ f(x)\ text(has a max turning point).` |
`:.\ text(T)text(angent:)\ \ y = 1/e` |
c.ii. | `text(Area)` | `= int_(_1)^1 1/e – x^2e^(-x^2) dx` |
`~~ 0.3568\ text{(to 4 d.p.)}` |
d. `text(When)\ x = m,\ \ n = m^2 e^(-m^2)`
`text(Find distance between)\ \ M(m, m^2 e^(-m^2)) and P(0, e):`
`D = sqrt((m – 0)^2 + (m^2 e^(-m^2) – e)^2)`
`=>\ text(MIN distance when)\ \ (dD)/(dm) = 0`
`D_(min) = 2.511\ \ text(when)\ \ m ~~ 0.783\ \ \ text{(by CAS)}`
Label any asymptotes with their equations and label any intercepts with the axes, writing them as coordinates. (3 marks)
a. | `f(x)` | `= (2x^2 + 3)/(x^2 + 1)` |
`= (2(x^2 + 1) + 1)/(x^2 + 1)` | ||
`= 2 + 1/(x^2 + 1)` |
b. `underset (x→oo) (lim y) = 2`
`text(S)text(ince)\ \ x^2>0\ \ text(for all)\ x,`
`=> f(x)_text(max)\ \ text(occurs when)\ \ x=0\ \ text(at)\ \ (0,3)`
c. `f(x)\ \ text(is an even function.)`
`:.\ text(Area)` | `= 2 int_0^1 2 + 1/(x^2 + 1)\ dx` | |
`= 2[2x + tan^(−1)(x)]_0^1` | ||
`=2[(2+pi/4) – 0]` | ||
`= 4 + pi/2` |
Consider the curve with equation `y = (x - 1) sqrt (2 - x),\ \ 1 <= x <= 2.`
Calculate the area of the region enclosed by the curve and the `x`-axis. (3 marks)
`4/15`
`x – 1 >= 0\ \ text(for)\ \ \ 1 <= x <= 2`
`sqrt(2 – x) >= 0\ \ text(for)\ \ \ 1 <= x <= 2`
`:. (x – 1) sqrt(2 – x) >=0\ \ text(for)\ \ \ 1 <= x <= 2`
`text(Let)\ \ u=2-x\ \ =>\ \ x=2-u`
`(du)/dx = -1\ \ =>\ \ dx = -du`
`text(When)\ \ x=2,\ \ u=0`
`text(When)\ \ x=1,\ \ u=1`
`A` | `= int_1^2 (x – 1) sqrt(2 – x)\ dx` |
`= int_1^0 -(2 – u -1) u^(1/2)\ du` | |
`= int_1^0 (u-1) u^(1/2)\ du` | |
`= int_1^0 u^(3/2) – u^(1/2)\ du` | |
`= [2/5u^(5/2)-2/3 u^(3/2)]_1^0` | |
`= [0-(2/5-2/3)]` | |
`= -((6-10))/15` | |
`= 4/15` |
A brooch is designed using inverse circular functions to make the shape shown in the diagram below.
The edges of the brooch in the first quadrant are described by the piecewise function
`f(x){(3text(arcsin)(x/2)text(,), 0 <= x <= sqrt2),(3text(arccos)(x/2)text(,), sqrt2 < x <= 2):}`
Give your answer in square centimetres, correct to one decimal place. (3 marks)
a. `text(Corner point occurs when)\ \ x=sqrt2.`
`y=3 sin^(-1) (sqrt2/2) = (3pi)/4`
`:.\ text(Coordinates are:)\ \ (sqrt2, (3pi)/4)`
b. `text(Reflect in the)\ xtext(-axis and then the)\ ytext(-axis:)`
`g(x){(-3text(arccos)(- x/2)text(,), -2 <= x < -sqrt2),(-3text(arcsin)(- x/2)text(,), -sqrt2 <= x <= 0):}`
c. | `A` | `= 4 xx (int_0^sqrt2 3sin^(−1)(x/2)dx + int_sqrt2^2 3cos^(−1)(x/2)dx)` |
`~~ 9.9\ text(cm²)` |
d. `text(Find the gradient of graph at)\ \ x=0:`
`f′(0) = 3/2`
`alpha = tan^(−1)(3/2) = 56.31…°`
`beta = pi/2 – tan^(−1)(1.5) = 33.69°`
`:.\ text(Acute angle between the edges)`
`=2 xx 33.69`
`=67.4°`
e. `f′(x)\ {(3/sqrt(4-x^2)text(,), 0<= x <= sqrt2),((-3)/sqrt(4-x^2)text(,), sqrt2 < x <= 2):}`
`:.\ text(Length of border)`
`= 4 int_0^sqrt2 sqrt(1 + (3/sqrt(4 – x^2))^2)\ dx + 4 int_sqrt2^2 sqrt(1 + ((-3)/sqrt(4 – x^2))^2)\ dx`
`= 4 int_0^2 sqrt(1 + (3/sqrt(4 – x^2))^2)\ dx`
`= int_0^2 sqrt(16 + 144/(4 – x^2)\ dx`
`:. a=16, \ b=144`
a. `text(Let)\ \ u = cos(2x)`
`(du)/(dx) = -2 sin (2x)\ \ =>\ \ -1/2 xx du = sin (2x)\ dx`
`int tan (2x)\ dx` | `= int (sin(2x))/(cos(2x))\ dx` |
`= -1/2 int 1/u\ du` | |
`= -1/2 log_e |\ u\ | + c` | |
`= -1/2 log_e |\ cos (2x)\ | + c` | |
`= 1/2 log_e |\ sec (2x)\ | + c` |
b.i. `text(Range:)\ \ tan^(-1)(x) in (- pi/2,pi/2)`
`=>1/2 tan^(-1)(x) in (- pi/4, pi/4)`
`:.\ text(Asymptotes:)\ \ y = -pi/4,\ \ y = pi/4`
b.ii.
c. | `f(sqrt 3)` | `= 1/2 tan^(-1) (sqrt 3)` |
`= 1/2 xx pi/3` | ||
`= pi/6` |
d. | `y` | `= 1/2tan^(−1)(x)` |
`2y` | `= tan^(−1)(x)` | |
`x` | `= tan(2y)` |
`text(Area)` | `=\ text(Area of rectangle – Area between graph and y-axis)` |
`= sqrt3 xx pi/6 – int_0^(pi/6) tan(2y)\ dy` | |
`= (sqrt3 pi)/6 -1/2[ln\ | sec(2y) |]_0^(pi/6)` | |
`= (sqrt3 pi)/6 – 1/2[ ln(sec(pi/3)) – ln(sec 0)]` | |
`= (sqrt3 pi)/6 – 1/2 (ln2 -ln1)` | |
`= (sqrt3 pi)/6 – 1/2 ln2` |
Consider `f(x) = 3x arctan (2x)`.
a. `f(x) = 3x arctan (2x)`
`f(0) = 0`
`text(When)\ \ x < 0, \ \ 3x<0,\ \ text(and)\ \ y = tan^(-1) (2x) < 0`
`text(When)\ \ x>0,\ \ 3x>0,\ \ text(and)\ \ y = tan^(-1) (2x) > 0`
b. `u = 3x, qquad v = tan^(-1)(2x)`
`u prime = 3, qquad v prime = 2/(1 + 4x^2)`
`:. f prime (x)` | `= 3(arctan (2x)) + (2/(1 + 4x^2))(3x)` |
`= 3 arctan (2x) + (6x)/(1 + 4x^2)` |
c. | `A` | `= int_(1/2)^(sqrt 3/2) arctan (2x)\ dx` |
`= 1/3 int_(1/2)^(sqrt 3/2) 3arctan (2x)\ dx` | ||
`=1/3 int_(1/2)^(sqrt 3/2) (3 arctan (2x) + (6x)/(1 + 4x^2) – (6x)/(1 + 4x^2))\ dx` | ||
`= 1/3 int_(1/2)^(sqrt 3/2) 3 arctan (2x) + (6x)/(1 + 4x^2) dx – int_(1/2)^(sqrt 3/2) (2x)/(1 + 4x^2)\ dx` | ||
`= 1/3 [3x arctan (2x)]_(1/2)^(sqrt 3/2) – 1/4 int_(1/2)^(sqrt 3/2) (8x)/(1 + 4x^2)\ dx` | ||
`= [sqrt 3/2 arctan (sqrt 3) – 1/2 arctan (1)] – 1/4[ln (1 + 4x^2)]_(1/2)^(sqrt 3/2)` | ||
`= sqrt 3/2 (pi/3) – 1/2 (pi/4) – 1/4 [ln (1 + 4(3/4)) – ln(1 + 4 (1/4)]` | ||
`= (pi sqrt 3)/6 – pi/8 – 1/4 (ln4 – ln 2)` | ||
`= (pi sqrt 3)/6 – pi/8 – 1/4 ln2` |