The total area enclosed between the `x`-axis and the graph of `f(x) = |x^3| - x^2 - |x|` is closest to
- −2.015
- −1.008
- 1.008
- 2.015
- 2.824
Aussie Maths & Science Teachers: Save your time with SmarterEd
The total area enclosed between the `x`-axis and the graph of `f(x) = |x^3| - x^2 - |x|` is closest to
`D`
`text(Graph)\ \ f(x) = |x^3| – x^2 – |x|\ \ \ (text(by CAS))`
`text(Intersection occurs at:)`
`x = 0, ±((1 + sqrt5)/2)`
`=>\ text(Function is even)`
`:.\ text(Area)` | `= −2int_0^(1 + sqrt5) f(x)\ dx\ \ (text(area is below axis))` |
`= 2.015` |
`=>\ D`
a. `text(Method 1:)` `tan^2 \ (5pi)/(12)-2 sqrt(3) tan \ (5pi)/(12)-1 = 0`
`tan \ (5pi)/(12)`
`= tan ((pi)/(4) + (pi)/(6))`
`= (tan \ (pi)/(4) + tan\ (pi)/(6))/(1-tan \ (pi)/(4) · tan \ (pi)/(6))`
`= (1 + (1)/(sqrt3))/(1-(1)/(sqrt3))`
`= (sqrt3+1)/(sqrt3-1) xx (sqrt3+1)/(sqrt3+1)`
`= (3+ 2 sqrt3 + 1)/(3-1)`
`= sqrt3 +2`
`text(Method 2:)`
`tan \ (5pi)/(6)`
`= (2tan \ (5pi)/(12))/(1-tan^2 \ (5pi)/(12))`
`- 1/sqrt3`
`=(2tan \ (5pi)/(12))/(1-tan^2 \ (5pi)/(12))`
`-2 sqrt3 tan \ (5pi)/(12)`
`= 1-tan^2 \ (5pi)/(12)`
`tan \ (5pi)/(12)`
`= (2 sqrt3 ± sqrt(12 + 4))/(2)`
`= sqrt3 + 2 \ \ \ (tan theta > 0)`
b. `text(Area)`
`= int_0 ^(2 sqrt3 + 6) \ (2)/(x^2-4x + 8)\ dx`
`= int_0 ^(2 sqrt3 + 6) \ (2)/((x -2)^2 + 2^2)`
`= [tan^-1 ((x-2)/(2))]_0 ^(2 sqrt3 + 6)`
`= tan^-1 (sqrt3 + 2)-tan^-1 (-1)`
`= (5pi)/(12)-(-(pi)/(4))`
`= (2pi)/(3)`
Let `f: R -> R,\ \ f(x) = x^2e^(-x^2)`. --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 6 WORK AREA LINES (style=lined) ---
d. `text(When)\ x = m,\ \ n = m^2 e^(-m^2)` `text(Find distance between)\ \ M(m, m^2 e^(-m^2)) and P(0, e):` `D = sqrt((m-0)^2 + (m^2 e^(-m^2)-e)^2)` `=>\ text(MIN distance when)\ \ (dD)/(dm) = 0` `D_(min) = 2.511\ \ text(when)\ \ m ~~ 0.783\ \ \ text{(by CAS)}`
a.
`f^{\prime}(x)`
`= x^2 ⋅ -2x ⋅ e^(-x^2) + e^(-x^2) ⋅ 2x`
`= 2x e^(-x^2) (1-x^2)`
b.i.
`f ^{″}(0) = 2 > 0\ \ \ text{(by CAS)}`
`:.\ text(Local minimum)`
b.ii.
`text(SP’s occur when)\ \ x = –1, 0, 1`
`f(x)_max = 1/e\ \ text(when)\ \ x = –1 and 1`
b.iii.
`f(x)_max + d`
`< 0`
`d`
`< 1/e`
c.i.
`text(At)\ \ x = –1, \ f(x)\ text(has a max turning point).`
`:.\ text(T)text(angent:)\ \ y = 1/e`
c.ii.
`text(Area)`
`= int_(_1)^1 1/e-x^2e^(-x^2) dx`
`~~ 0.3568\ text{(to 4 d.p.)}`
--- 3 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) ---
b. `underset (x→oo) (lim y) = 2` `text(S)text(ince)\ \ x^2>0\ \ text(for all)\ x,` `=> f(x)_text(max)\ \ text(occurs when)\ \ x=0\ \ text(at)\ \ (0,3)` c. `f(x)\ \ text(is an even function.)`
a.
`f(x)`
`= (2x^2 + 3)/(x^2 + 1)`
`= (2(x^2 + 1) + 1)/(x^2 + 1)`
`= 2 + 1/(x^2 + 1)`
`:.\ text(Area)`
`= 2 int_0^1 2 + 1/(x^2 + 1)\ dx`
`= 2[2x + tan^(−1)(x)]_0^1`
`=2[(2+pi/4)-0]`
`= 4 + pi/2`
Consider the curve with equation `y = (x - 1) sqrt (2 - x),\ \ 1 <= x <= 2.`
Calculate the area of the region enclosed by the curve and the `x`-axis. (3 marks)
`4/15`
`x – 1 >= 0\ \ text(for)\ \ \ 1 <= x <= 2`
`sqrt(2 – x) >= 0\ \ text(for)\ \ \ 1 <= x <= 2`
`:. (x – 1) sqrt(2 – x) >=0\ \ text(for)\ \ \ 1 <= x <= 2`
`text(Let)\ \ u=2-x\ \ =>\ \ x=2-u`
`(du)/dx = -1\ \ =>\ \ dx = -du`
`text(When)\ \ x=2,\ \ u=0`
`text(When)\ \ x=1,\ \ u=1`
`A` | `= int_1^2 (x – 1) sqrt(2 – x)\ dx` |
`= int_1^0 -(2 – u -1) u^(1/2)\ du` | |
`= int_1^0 (u-1) u^(1/2)\ du` | |
`= int_1^0 u^(3/2) – u^(1/2)\ du` | |
`= [2/5u^(5/2)-2/3 u^(3/2)]_1^0` | |
`= [0-(2/5-2/3)]` | |
`= -((6-10))/15` | |
`= 4/15` |
A brooch is designed using inverse circular functions to make the shape shown in the diagram below. The edges of the brooch in the first quadrant are described by the piecewise function `f(x){(3text(arcsin)(x/2)text(,), 0 <= x <= sqrt2),(3text(arccos)(x/2)text(,), sqrt2 < x <= 2):}` --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 6 WORK AREA LINES (style=lined) --- --- 5 WORK AREA LINES (style=lined) ---
Show that the length of the gold border needed is given by a definite integral of the form `int_0^2 (sqrt(a + b/(4-x^2)))dx`, where `a, b ∈ R`. Find the values of `a` and `b`. (2 marks)
a. `text(Corner point occurs when)\ \ x=sqrt2.` `y=3 sin^(-1) (sqrt2/2) = (3pi)/4` `:.\ text(Coordinates are:)\ \ (sqrt2, (3pi)/4)` b. `text(Reflect in the)\ xtext(-axis and then the)\ ytext(-axis:)` `g(x){(-3text(arccos)(- x/2)text(,), -2 <= x < -sqrt2),(-3text(arcsin)(- x/2)text(,), -sqrt2 <= x <= 0):}` d. `text(Find the gradient of graph at)\ \ x=0:` `f′(0) = 3/2` `alpha = tan^(−1)(3/2) = 56.31…°` `beta = pi/2-tan^(−1)(1.5) = 33.69°` `=2 xx 33.69` `=67.4°` e. `f′(x)\ {(3/sqrt(4-x^2)text(,), 0<= x <= sqrt2),((-3)/sqrt(4-x^2)text(,), sqrt2 < x <= 2):}` `:.\ text(Length of border)` `= 4 int_0^sqrt2 sqrt(1 + (3/sqrt(4-x^2))^2)\ dx + 4 int_sqrt2^2 sqrt(1 + ((-3)/sqrt(4-x^2))^2)\ dx` `= 4 int_0^2 sqrt(1 + (3/sqrt(4-x^2))^2)\ dx` `= int_0^2 sqrt(16 + 144/(4-x^2)\ dx`
c.
`A`
`= 4 xx (int_0^sqrt2 3sin^(−1)(x/2)dx + int_sqrt2^2 3cos^(−1)(x/2)dx)`
`~~ 9.9\ text(cm²)`
`:.\ text(Acute angle between the edges)`
`:. a=16, \ b=144`
--- 5 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=lined) ---
a. `text(Let)\ \ u = cos(2x)` `(du)/(dx) = -2 sin (2x)\ \ =>\ \ -1/2 xx du = sin (2x)\ dx` b.i. `text(Range:)\ \ tan^(-1)(x) in (- pi/2,pi/2)` `=>1/2 tan^(-1)(x) in (- pi/4, pi/4)` `:.\ text(Asymptotes:)\ \ y = -pi/4,\ \ y = pi/4` b.ii.
`int tan (2x)\ dx`
`= int (sin(2x))/(cos(2x))\ dx`
`= -1/2 int 1/u\ du`
`= -1/2 log_e |\ u\ | + c`
`= -1/2 log_e |\ cos (2x)\ | + c`
`= 1/2 log_e |\ sec (2x)\ | + c`
c.
`f(sqrt 3)`
`= 1/2 tan^(-1) (sqrt 3)`
`= 1/2 xx pi/3`
`= pi/6`
d.
`y`
`= 1/2tan^(−1)(x)`
`2y`
`= tan^(−1)(x)`
`x`
`= tan(2y)`
`text(Area)`
`=\ text(Area of rectangle – Area between graph and y-axis)`
`= sqrt3 xx pi/6-int_0^(pi/6) tan(2y)\ dy`
`= (sqrt3 pi)/6 -1/2[ln\ | sec(2y) |]_0^(pi/6)`
`= (sqrt3 pi)/6-1/2[ ln(sec(pi/3))-ln(sec 0)]`
`= (sqrt3 pi)/6-1/2 (ln2 -ln1)`
`= (sqrt3 pi)/6-1/2 ln2`
Consider `f(x) = 3x arctan (2x)`. --- 3 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 7 WORK AREA LINES (style=lined) ---
a. `f(x) = 3x arctan (2x)` `f(0) = 0` `text(When)\ \ x < 0, \ \ 3x<0,\ \ text(and)\ \ y = tan^(-1) (2x) < 0` `text(When)\ \ x>0,\ \ 3x>0,\ \ text(and)\ \ y = tan^(-1) (2x) > 0` b. `u = 3x, qquad v = tan^(-1)(2x)` `u prime = 3, qquad v prime = 2/(1 + 4x^2)`
`:. f prime (x)`
`= 3(arctan (2x)) + (2/(1 + 4x^2))(3x)`
`= 3 arctan (2x) + (6x)/(1 + 4x^2)`
c.
`A`
`= int_(1/2)^(sqrt 3/2) arctan (2x)\ dx`
`= 1/3 int_(1/2)^(sqrt 3/2) 3arctan (2x)\ dx`
`=1/3 int_(1/2)^(sqrt 3/2) (3 arctan (2x) + (6x)/(1 + 4x^2)-(6x)/(1 + 4x^2))\ dx`
`= 1/3 int_(1/2)^(sqrt 3/2) 3 arctan (2x) + (6x)/(1 + 4x^2) dx-int_(1/2)^(sqrt 3/2) (2x)/(1 + 4x^2)\ dx`
`= 1/3 [3x arctan (2x)]_(1/2)^(sqrt 3/2)-1/4 int_(1/2)^(sqrt 3/2) (8x)/(1 + 4x^2)\ dx`
`= [sqrt 3/2 arctan (sqrt 3)-1/2 arctan (1)]-1/4[ln (1 + 4x^2)]_(1/2)^(sqrt 3/2)`
`= sqrt 3/2 (pi/3)-1/2 (pi/4)-1/4 [ln (1 + 4(3/4))-ln(1 + 4 (1/4)]`
`= (pi sqrt 3)/6-pi/8-1/4 (ln4-ln 2)`
`= (pi sqrt 3)/6-pi/8-1/4 ln2`