SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Vectors, EXT2 V1 2025 HSC 16c

Consider the point \(B\) with three-dimensional position vector \(\underset{\sim}{b}\) and the line  \(\ell: \underset{\sim}{a}+\lambda \underset{\sim}{d}\), where \(\underset{\sim}{a}\) and \(\underset{\sim}{d}\) are three-dimensional vectors, \(\abs{\underset{\sim}{d}}=1\) and \(\lambda\) is a parameter.

Let \(f(\lambda)\) be the distance between a point on the line \(\ell\) and the point \(B\).

  1. Find \(\lambda_0\), the value of \(\lambda\) that minimises \(f\), in terms of \(\underset{\sim}{a}, \underset{\sim}{b}\) and \(\underset{\sim}{d}\).   (2 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  2. Let \(P\) be the point with position vector  \(\underset{\sim}{a}+\lambda_0 \underset{\sim}{d}\).
  3. Show that \(PB\) is perpendicular to the direction of the line \(\ell\).   (1 mark)

    --- 7 WORK AREA LINES (style=lined) ---

  4. Hence, or otherwise, find the shortest distance between the line \(\ell\) and the sphere of radius 1 unit, centred at the origin \(O\), in terms of \(\underset{\sim}{d}\) and \(\underset{\sim}{a}\).
  5. You may assume that if \(B\) is the point on the sphere closest to \(\ell\), then \(O B P\) is a straight line.   (3 marks)

    --- 16 WORK AREA LINES (style=lined) ---

Show Answers Only

i.    \(\lambda_0=\underset{\sim}{d}(\underset{\sim}{b}-\underset{\sim}{a})\)

ii.   \(\text{See Worked Solutions.}\)

iii.  \(d_{\min }= \begin{cases}\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}-1, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}>1 \\ 0, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2} \leqslant 1 \ \ \text{(i.e. it touches sphere) }\end{cases}\)

Show Worked Solution

i.    \(\ell=\underset{\sim}{a}+\lambda \underset{\sim}{d}, \quad\abs{\underset{\sim}{d}}=1\)

\(\text{Vector from point \(B\) to a point on \(\ell\)}:\ \underset{\sim}{a}+\lambda \underset{\sim}{d}-\underset{\sim}{b}\)

\(f(\lambda)=\text{distance between \(\ell\) and \(B\)}\)

\(f(\lambda)=\abs{\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d}}\)

\(\text{At} \ \ \lambda_0, f(\lambda) \ \ \text{is a min}\ \Rightarrow \ f(\lambda)^2 \ \ \text {is also a min}\)

\(f(\lambda)^2\) \(=\abs{\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d}}^2\)
  \(=(\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d})(\underset{\sim}{a}-\underset{\sim}{b}+\lambda \underset{\sim}{d})\)
  \(=(\underset{\sim}{a}-\underset{\sim}{b})\cdot (\underset{\sim}{a}-\underset{\sim}{b})+2\lambda (\underset{\sim}{a}-\underset{\sim}{b}) \cdot \underset{\sim}{d}+\lambda^2 \underset{\sim}{d} \cdot  \underset{\sim}{d}\)
  \(=\lambda^2|\underset{\sim}{d}|^2+2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b}) \lambda +\abs{\underset{\sim}{a}-\underset{\sim}{b}}^2\)
  \(=\lambda^2+2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b}) \lambda+\abs{\underset{\sim}{a}-\underset{\sim}{b}}^2\)

 

\(f(\lambda)^2 \ \ \text{is a concave up quadratic.}\)

\(f(\lambda)_{\text {min}}^2 \ \ \text{occurs at the vertex.}\)

\(\lambda_0=-\dfrac{b}{2 a}=-\dfrac{2 \underset{\sim}{d} \cdot (\underset{\sim}{a}-\underset{\sim}{b})}{2}=\underset{\sim}{d} \cdot (\underset{\sim}{b}-\underset{\sim}{a})\)
 

ii.    \(P \ \text{has position vector} \ \ \underset{\sim}{a}+\lambda_0 \underset{\sim}{d}\)

\(\text{Show} \ \ \overrightarrow{PB} \perp \ell:\)

\(\overrightarrow{PB}=\underset{\sim}{b}-\underset{\sim}{p}=\underset{\sim}{b}-\underset{\sim}{a}-\lambda_0 \underset{\sim}{d}\)

\(\overrightarrow{P B} \cdot \underset{\sim}{d}\) \(=\left(\underset{\sim}{b}-\underset{\sim}{a}-\lambda_0 \underset{\sim}{d}\right) \cdot \underset{\sim}{d}\)
  \(=(\underset{\sim}{b}-\underset{\sim}{a}) \cdot \underset{\sim}{d}-\lambda_0 \underset{\sim}{d} \cdot \underset{\sim}{d}\)
  \(=\lambda_0-\lambda_0\abs{\underset{\sim}{d}}^2\)
  \(=0\)

  

\(\therefore \overrightarrow{PB}\ \text{is perpendicular to the direction of the line}\ \ell. \)
 

iii.   \(\text{Shortest distance between} \ \ell \ \text{and sphere (radius\(=1\))}\)

\(=\ \text{(shortest distance \(\ell\) to \(O\))}-1\)
 

\(f\left(\lambda_0\right)=\text{shortest distance \(\ell\) to point \(B\)}\)

\(\text{Set} \ \ \underset{\sim}{b}=0 \ \Rightarrow \ f\left(\lambda_0\right)=\text{shortest distance \(\ell\) to \(0\)}\)

\(\Rightarrow \lambda_0=\underset{\sim}{d} \cdot (\underset{\sim}{b}-\underset{\sim}{a})=-\underset{\sim}{d} \cdot \underset{\sim}{a}\)

\(f\left(\lambda_0\right)\) \(=\abs{\underset{\sim}{a}-\underset{\sim}{b}-(\underset{\sim}{d} \cdot \underset{\sim}{a})\cdot \underset{\sim}{d}}=\abs{\underset{\sim}{a}-(\underset{\sim}{d} \cdot \underset{\sim}{a})\cdot \underset{\sim}{d}}\)
\(f\left(\lambda_0\right)^2\) \(=\abs{\underset{\sim}{a}}^2-2( \underset{\sim}{a}\cdot \underset{\sim}{d})^2+(\underset{\sim}{d} \cdot \underset{\sim}{a})^2\abs{\underset{\sim}{d}}^2\)
  \(=\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2\)
\(f\left(\lambda_0\right)\) \(=\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}\)

 

\(\text {Shortest distance of \(\ell\) to sphere \(\left(d_{\min }\right)\):}\)

\(d_{\min }= \begin{cases}\sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}-1, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2}>1 \\ 0, & \sqrt{\abs{\underset{\sim}{a}}^2-(\underset{\sim}{a} \cdot \underset{\sim}{d})^2} \leqslant 1 \ \ \text{(i.e. it touches sphere) }\end{cases}\)

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 5, Band 6, smc-1196-48-Spheres, smc-1196-80-3D vectors

Vectors, EXT2 V1 2022 HSC 14a

  1. The two non-parallel vectors `\vec{u}` and `\vec{v}` satisfy  `lambda vec(u)+mu vec(v)= vec(0)`  for some real numbers `\lambda` and `\mu`.
  2. Show that  `\lambda=\mu=0`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. The two non-parallel vectors `\vec{u}` and `\vec{v}` satisfy  `\lambda_1 \vec{u}+\mu_1 \vec{v}=\lambda_2 \vec{u}+\mu_2 \vec{v}`  for some real numbers `\lambda_1, \lambda_2, \mu_1` and `\mu_2`.
  4. Using part (i), or otherwise, show that  `\lambda_1=\lambda_2`  and  `\mu_1=\mu_2`. (1  mark)

    --- 5 WORK AREA LINES (style=lined) ---

The diagram below shows the tetrahedron with vertices `A, B, C` and `S`.

The point `K` is defined by  `vec(SK)=(1)/(4) vec(SB)+(1)/(3) vec(SC)`, as shown in the diagram.

The point `L` is the point of intersection of the straight lines `S K` and `B C`.
 
                       
 

  1. Using part (ii), or otherwise, determine the position of `L` by showing that  `vec(BL)=(4)/(7) vec(BC)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The point `P` is defined by  `vec(AP)=-6 vec(AB)-8 vec(AC)`.
  3. Does `P` lie on the line `A L`? Justify your answer.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solution)}`
  2. `text{Proof (See Worked Solution)}`
  3. `text{Proof (See Worked Solution)}`
  4. `P\ text{lies on}\ vec(AL)\ \ text{(See Worked Solution)}`
Show Worked Solution
i.    `lambda vecu+mu vecv` `=0`
  `lambda vecu` `=-mu vecv`

 
`lambda=0\ \ text{or}\ \ vecu=-(mu/lambda)vecv=k vecv\ \ (kinRR)`

`text{S}text{ince}\ \ vecu and vecv\ \ text{are not parallel}`

`=> lambda=mu=0`
 

ii.  `\lambda_1 \vec{u}+\mu_1 \vec{v}=\lambda_2 \vec{u}+\mu_2 \vec{v}`

`\lambda_1 \vec{u}-\lambda_2 \vec{u}+\mu_1 \vec{v}-\mu_2 \vec{v}` `=vec0`  
`(\lambda_1-\lambda_2)\vec{u}+(\mu_1-\mu_2)\vec{v}` `=vec0`  

 

`text{Using part (i):}`

`(\lambda_1-\lambda_2)=0 and (\mu_1-\mu_2)=0`

`:.\lambda_1=\lambda_2  and  \mu_1=\mu_2\ …\ text{as required}`


Mean mark (ii) 56%.
iii.   `vec(BL)` `=lambda vec(BC)`
    `=lambda(vec(BS)+vec(SC))\ \ \ …\ (1)`

 

`vec(BL)` `=vec(BS)+mu vec(SK)`  
  `=-vec(SB)+mu(1/4vec(SB)+1/3vec(SC))`  
  `=-vec(SB)+mu/4vec(SB)+mu/3vec(SC)`  
  `=mu/3vec(SC)+(mu/4-1)vec(SB)\ \ \ …\ (2)`  


♦♦♦ Mean mark (iii) 25%.

`text{Using}\ \ (1) = (2):`

`lambda vec(BS)+ lambda vec(SC)=mu/3vec(SC)+(mu/4-1)vec(SB)`

`mu/3=lambda, \ \ 1-mu/4=lambda`

`mu/3` `=1-mu/4`  
`(4mu+3mu)/12` `=1`  
`(7mu)/12` `=1`  
`mu` `=12/7`  

 
`lambda=(12/7)/3=4/7`

`:.vec(BL)=(4)/(7) vec(BC)\ \ text{… as required}`
 

iv.  `vec(AP)=-6 vec(AB)-8 vec(AC)`

`text{If}\ P\ text{lies on}\ AL, ∃k\ text{such that}\ \ vec(AP)=k vec(AL)`


♦♦♦ Mean mark (iv) 23%.
`-6 vec(AB)-8 vec(AC)` `=k vec(AL)`  
`-6 vec(AB)-8 (vec(AB)+vec(BC))` `=k(vec(AB)+vec(BL))`  
`-14 vec(AB)-8vec(BC)` `=k(vec(AB)+4/7vec(BC))\ \ text{(see part (iii))}`  
`-14 vec(AB)-8vec(BC)` `=kvec(AB)+(4k)/7vec(BC)`  

 
`k=-14, \ \ (4k)/7=-8\ \ =>\ \ k=-14`

`:.\ P\ text{lies on}\ \ AL.`

Filed Under: Vectors and Geometry, Vectors and Vector Equations of Lines Tagged With: Band 4, Band 5, Band 6, smc-1196-25-Point lies on line, smc-1196-30-Parallel, smc-1196-80-3D vectors, smc-1210-20-Pyramid, smc-1210-70-3D problems

Vectors, EXT2 V1 2021 HSC 12c

Two lines are given by  `text(r)_1 = ((-2),(1),(3)) + lambda((1),(0),(2))`  and  `text(r)_2 = ((4),(-2),(q)) + mu ((p),(3),(-1))` , where `p` and `q` are real numbers. These lines intersect and are perpendicular.

Find the values of `p` and `q`.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`p = 2 \ , \ q = 20`

Show Worked Solution

`text{S} text{ince vectors are perpendicular}`

`((1),(0),(2)) ((p),(3),(-1))` `= 0`
`p – 2` `= 0`
`p` `= 2`
 

`text{S} text{ince lines intersect, equate}\ y text{-coordinates:} `

`1 + lambda 0` `= -2 + 3 mu`
`mu` `= 1`

 

`text{Find} \ lambda \ text{by equating}\ xtext{-coordinates:}`

`-2 + lambda` `= 4 + 1 xx 2`
`lambda` `= 8`

 
`text{Equating}\ ztext{-coordinates:}`

`3 + 8 xx 2` `= q – 1 xx 1`
`q` `= 20`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-20-Intersection, smc-1196-80-3D vectors

Vectors, EXT2 V1 2021 HSC 7 MC

Which diagram best shows the curve described by the position vector

`underset~r (t) = -5 text{cos}(t) underset~i + 5 text{sin}(t) underset~j + t underset~k`  for  `0 ≤ t ≤ 4 pi` ?

 

Show Answers Only

`D`

Show Worked Solution

`text{By elimination}`

`text{Check graph coordinates for specific values of}\ t:`

`text{When} \ \ t = 4 pi \ , \ underset~r = -5 underset~i + 0 underset~j + 4 pi underset~k`

`-> \ text{Eliminate A and B}`

`text{When} \ t = pi/4 \ , \ underset~r = (-5)/sqrt(2) underset~i + 5/sqrt(2) underset~j + pi/4 underset~k`

`-> \ text{Eliminate C}`
 

`=>\ D`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 4, smc-1196-45-Curves, smc-1196-80-3D vectors

Vectors, EXT2 V1 2021 HSC 3 MC

Which of the following is a vector equation of the line joining the points  `A (4, 2, 5)`  and  `B (–2, 2, 1)`?

  1. `underset~r = ((4), (2), (5)) + λ ((1),(2),(3))`
  2. `underset~r = ((4), (2), (5)) + λ ((3),(0),(2))`
  3. `underset~r = ((1), (2), (3)) + λ ((4),(2),(5))`
  4. `underset~r = ((3), (0), (2)) + λ ((4),(2),(5))`
Show Answers Only

`B`

Show Worked Solution
`overset->{AB}` `= ((-2),(2),(1)) – ((4),(2),(5)) = ((-6),(0),(-4))`  
`underset~r` `= ((4),(2),(5)) + λ_1 ((-6),(0),(-4))`  
  `= ((4), (2), (5)) + λ_2 ((3),(0),(2))`  

 
`=>\ B`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 2, smc-1196-10-Find line given 2 points, smc-1196-80-3D vectors

Vectors, EXT2 V1 2020 HSC 13b

Consider the two lines in three dimensions given by
 

`underset~r = ((3),(-1),(7)) + λ_1 ((1),(2),(1))`  and  `underset~r = ((3),(-6),(2)) + λ_2 ((-2),(1),(3))`.
 

By equating components, find the point of intersection of the two lines.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`((1),(-5),(5))`

Show Worked Solution

`underset~(r_1) = ((3),(-1),(7)) + λ_1 ((1),(2),(1)) = ((3 + λ_1),(-1 + 2λ_1),(7 + λ_1))`

`underset~(r_2) = ((3),(-6),(2)) + λ_2 ((-2),(1),(3)) = ((3 – 2λ_2),(-6 + λ_2),(2 + 3λ_2))`

 
`text{Intersection occurs when:}`

`3 + λ_1 ` `= 3 – 2λ_2 \ … \ (1)`
`-1 + 2λ_1` `= -6 + λ_2 \ … \ (2)`
`7 + λ_1` `= 2 + 3λ_2 \ … \ (3)`

 
`text{Subtract} \ (3) – (1):`

`4` `= -1 + 5 λ_2`
`λ_2` `=1`

 
`text{Substitute} \ \ λ_2 = 1\ \ text{into} \ (1):`

`3 + λ_1` `= 1`
`λ_1` `= -2`

 

`text{Test that}\  \ λ_1 = -2 \ , \  λ_2 = 1\ \ text{satisfies} \ (2):`

`-1 + 2 xx  – 2` `= -6 + 1`
`-5` `= -5`

 
`∃ \ λ_1,  λ_2, \ text{that satisfy all equations}`

`=> \ text{3 lines intersect at a point}`

`:.\ text{Point of intersection}`

`= ((3),(-6),(2)) + 1 ((-2),(1),(3)) = ((1),(-5),(5))`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-20-Intersection, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 24

Show that the points  `A(2, 1, text{−1}), \ B(4, 2, text{−3})`  and  `C(text{−4}, text{−2}, 5)`  are collinear.  (2 marks)

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

`vec(AB) = ((4), (2), (text{−3})) – ((2), (1), (text{−1})) = ((2), (1), (text{−2}))`

`vec(AC) = ((text{−4}), (text{−2}), (5)) – ((2), (1), (text{−1})) = ((text{−6}), (text{−3}), (6)) = -3((2), (1), (text{−2}))`

 

`text(S) text(ince)\ vec(AB)\ text(||)\ vec(AC) and A\ text(lies on both lines,)`

`A, B, C\ \ text(are collinear).`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-25-Point lies on line, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 21

  1. Find the equation of the vector line  `underset~v`  that passes through  `Atext{(5, 2, 3)}`  and  `B(7, 6, 1)`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. A sphere has centre  `underset~c`  at  `text{(2, 3, 5)}`  and a radius of  `5sqrt2`  units.
    Find the points where the vector line  `underset~v`  meets the sphere.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `underset~v = ((5),(2),(3)) + lambda((1),(2),(−1))`
  2. `((2),(–4),(6)), \ ((7),(6),(1))`
Show Worked Solution

i.   `overset(->)(BA) = ((7-5),(6-2),(1-3)) = ((2),(4),(−2)) = 2((1),(2),(−1))`

`underset~v = ((5),(2),(3)) + lambda((1),(2),(−1))`
 

ii.   `text(General point)\ underset~v:`

`x = 5 + lambda`

`y = 2 + 2lambda`

`z = 3-lambda`
 

`text(Equation of sphere,)\ underset~c = (2, 3, 5),\ text(radius)\ 5sqrt2:`

`(x-2)^2 + (y-3)^2 + (z -5)^2` `= (5sqrt2)^2`
`(lambda + 3)^2 + (2lambda-1)^2 + (−lambda-2)^2` `= 50`
`lambda^2 + 6lambda + 9 + 4lambda^2-4lambda + 1 + lambda^2 + 4lambda + 4` `= 50`
`6lambda^2 + 6lambda + 14` `= 50`
`6lambda^2 + 6lambda-36` `= 0`
`6(lambda + 3)(lambda-2)` `= 0`
`lambda` `= –3\ text(or)\ 2`

 
`text(When)\ \ lambda = –3,`

`text(Intersection) = ((5),(2),(3))-3((1),(2),(−1)) = ((2),(–4),(6))`

`text(When)\ \ lambda = 2,`

`text(Intersection) = ((5),(2),(3)) + 2((1),(2),(−1)) = ((7),(6),(1))`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-10-Find line given 2 points, smc-1196-48-Spheres, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 18

A sphere is represented by the equation

`x^2-4x + y^2 + 8y + z^2-3z + 2 = 0`

  1. Determine the centre  `underset~c`  and radius of the sphere.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the vector equation of the sphere.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `underset~c = ((2),(-4),({3}/{2})) \ , \ text(radius) = (9)/(2)`
  2. `| \ underset~r-((2),(-4),({3}/{2})) | = (9)/(2)`
Show Worked Solution

i.  `x^2-4x + y^2 + 8y + z^2-3z + 2 = 0`

`(x-2)^2 + (y+4)^2 + (z-{3}/{2})^2 + 2-(89)/(4) = 0`

`(x-2)^2 + (y+4)^2 + (z-{3}/{2})^2 = (81)/(4)`
 
`:. \ underset~c = ((2),(-4),({3}/{2})) \ , \ text(radius) = (9)/(2)`
 

ii. `text(Vector equation:)`

`| \ underset~r-((2),(-4),({3}/{2})) | = (9)/(2)`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-48-Spheres, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 15

Consider the two vector line equations

`underset~(v_1) = ((1),(4),(−2)) + lambda_1((3),(0),(−1)), qquad underset~(v_2) = ((3),(2),(2)) + lambda_2((4),(2),(−6))`

  1. Show that  `underset~(v_1)`  and  `underset~(v_2)`  intersect and determine the point of intersection . (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the acute angle between the vector lines, to the nearest minute.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `40°29’\ \ (text(nearest minute))`
Show Worked Solution

i.   `text(Solve simultaneously:)`

`1 + 3lambda_1` `= 3 + 4lambda_2` `\ \ …\ (1)`
`4 + 0lambda_1` `= 2 + 2lambda_2` `\ \ …\ (2)`
`−2 – lambda_1` `= 2 – 6lambda_2` `\ \ …\ (3)`

 
`=> lambda_2 = 1\ \ \ text{(from (2))}`

`=>lambda_1 = 2\ \ \ text{(from (1) and (3))}`

`:.\ text(vector lines intersect)`
  

`text(P.O.I.) = ((1),(4),(−2)) + 2((3),(0), (−1)) = ((7),(4),(−4))`

 

ii.   `underset~(v_1) = underset~(a_1) + lambda_1*underset~(b_1)`

`underset~(v_2) = underset~(a_2) + lambda_2*underset~(b_2)`

`costheta` `= (underset~(b_1) · underset~(b_2))/(|underset~b_1||underset~b_2|)`
  `= (12 + 0 + 6)/(sqrt10 sqrt56)`
  `= 0.7606…`

 

`theta` `= 40.479…`
  `= 40°29’\ \ (text(nearest minute))`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, Band 4, smc-1196-20-Intersection, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 3

Find the value of  `n`  given

`underset~v = ((5),(2),(n)) + lambda_1((2),(1),(3))` 

is perpendicular to

`underset~u = ((2),(0),(1)) + lambda_2((2),(n),(1))`.  (2 marks)

Show Answers Only

`−7`

Show Worked Solution

`text(Given)\ \ underset~v ⊥ underset~u:`

`((2),(1),(3)) · ((2),(n),(1)) = 0`

`4 + n + 3` `= 0`
`n` `= −7`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 3, smc-1196-40-Perpendicular, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 9

  1. Find the equation of line vector  `underset ~r`, given it passes through  `(1, 3, –2)`  and  `(2, –1, 2)`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Determine if  `underset ~r`  passes through  `(4, –9, 10)`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `underset ~r = ((1), (3), (-2)) + lambda ((1), (-4), (4)) or`

       
      

    `underset ~r = ((2), (-1), (2)) + lambda ((-1), (4), (-4))`

  2. `text(See Worked Solutions)`
Show Worked Solution

i.     `text(Method 1)`

`text(Let)\ \ A(1, 3, –2) and B(2, –1, 2)`

`vec (AB)` `= ((2), (-1), (2))-((1), (3), (-2)) = ((1), (-4), (4))`
`underset ~r` `= ((1), (3), (-2)) + lambda ((1), (-4), (4))`

 

`text (Method 2)`

`vec (BA)` `= ((1), (3), (-2))-((2), (-1), (2)) = ((-1), (4), (-4))`
`underset ~r` `= ((2), (-1), (2)) + lambda ((-1), (4), (-4))`

 

ii.   `text(If)\ \ (4, –9, 10)\ \ text(lies on the vector line,)`

`∃ lambda\ \ text(that satisfies:)`

`1 + lambda` `= 4\ \ text{… (1)}`
`3-4 lambda` `= -9\ \ text{… (2)}`
`-2 + 4 lambda` `= 10\ \ text{… (3)}`

 

`lambda = 3\ \ text(satisfies all equations)`

`:. (4, –9, 10)\ \ text(lies on the line.)`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 2, Band 3, smc-1196-10-Find line given 2 points, smc-1196-25-Point lies on line, smc-1196-80-3D vectors

Vectors, EXT2 V1 SM-Bank 7

Find the value of `x` and `y`, given

`underset ~r = ((5), (-1), (2)) + lambda ((x), (y), (-3))`

and  `underset ~r`  is perpendicular to both `underset ~v` and `underset ~w`, where

`underset ~v = ((1), (2), (1)) + mu_1 ((3), (-3), (-1))`  and  `underset ~w = ((-3), (1), (1)) + mu_2 ((-4), (-1), (-2))`.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = 1, y = 2`

Show Worked Solution

`text(S) text(ince)\ underset ~r\ text(is perpendicular to)\ underset ~v and underset ~w:`
 

`((x), (y), (-3))((3), (-3), (-1)) = 0`

`3x – 3y + 3` `= 0`
`x – y` `= -1\ text{… (1)}`

 
`((x), (y), (-3))((-4), (-1), (-2)) = 0`

`-4x – y + 6` `= 0`
`4x + y` `= 6\ text{… (2)}`

 
`(1) + (2)`

`5x` `= 5`
`:.x` `= 1`
`:. y` `= 2`

Filed Under: Vectors and Vector Equations of Lines Tagged With: Band 4, smc-1196-40-Perpendicular, smc-1196-80-3D vectors

Copyright © 2014–2025 SmarterEd.com.au · Log in