On the triangular pyramid \(A B C D, L\) is the midpoint of \(A B, M\) is the midpoint of \(A C, N\) is the midpoint of \(A D, P\) is the midpoint of \(C D, Q\) is the midpoint of \(B D\) and \(R\) is the midpoint of \(B C\).
Let \(\underset{\sim}{b}=\overrightarrow{A B}, \underset{\sim}{c}=\overrightarrow{A C}\) and \(\underset{\sim}{d}=\overrightarrow{A D}\).
- Show that \(\overrightarrow{L P}=\dfrac{1}{2}(-\underset{\sim}{b}+\underset{\sim}{c}+\underset{\sim}{d})\). (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
- It can be shown that
\(\overrightarrow{M Q}=\dfrac{1}{2}(\underset{\sim}{b}-\underset{\sim}{c}+\underset{\sim}{d})\) and
\(\overrightarrow{N R}=\dfrac{1}{2}(\underset{\sim}{b}+\underset{\sim}{c}-\underset{\sim}{d})\). (Do NOT prove these.)
- Prove that
\( \Big{|}\overrightarrow{A B}\Big{|}^2+\Big{|}\overrightarrow{A C}\Big{|}^2+\Big{|}\overrightarrow{A D}\Big{|}^2+\Big{|}\overrightarrow{B C}\Big{|}^2+\Big{|}\overrightarrow{B D}\Big{|}^2+\Big{|}\overrightarrow{C D}\Big{|}^2 \)
\(=4\left(\Big{|}\overrightarrow{L P}\Big{|}^2+\Big{|}\overrightarrow{M Q}\Big{|}^2+\Big{|}\overrightarrow{N R}\Big{|}^2\right)\) (3 marks)
--- 10 WORK AREA LINES (style=lined) ---