Consider the function `g: R -> R, \ g(x) = 2sin(2x).`
- State the range of `g`. (1 mark)
- State the period of `g`. (1 mark)
- Solve `2 sin(2x) = sqrt3` for `x ∈ R`. (3 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Consider the function `g: R -> R, \ g(x) = 2sin(2x).`
a. `text(S)text(ince) -1<sin(2x)<1,`
`text(Range)\ g(x) = [–2,2]`
b. `text(Period) = (2pi)/n = (2pi)/2 = pi`
c. | `2sin(2x)` | `=sqrt3` |
`sin(2x)` | `=sqrt3/2` | |
`2x` | `=pi/3, (2pi)/3, pi/3 + 2pi, (2pi)/3 + 2pi, …` | |
`x` | `=pi/6, pi/3, pi/6+pi, pi/3+pi, …` |
`:.\ text(General solution)`
`= pi/6 + npi, pi/3 + npi\ \ \ (n in ZZ)`
The diagram below shows one cycle of a circular function.
The amplitude, period and range of this function are respectively
`E`
`text(Graph centres around)\ \ y = 1`
`text(Amplitude) \ = 3`
`:. \ text(Range) \ = [1 – 3, 1 + 3] = [-2, 4]`
`text(Period:) = 4`
`=> E`
Let `f: R -> R,\ \ f(x) = 3 sin ((2x)/5) - 2`.
The period and range of `f` are respectively
`B`
`text(Period)` | `= (2pi)/n` |
`= (2 pi)/(2/5)` | |
`= 5 pi` | |
`text(Range)` | `= [-2 -3, -2 + 3]` |
`= [-5, 1]` |
`=> B`
Let `f : R → R, \ f (x) = 5sin(2x) - 1`.
The period and range of this function are respectively
`C`
`text(Period) = (2pi)/2 = pi`
`text(Range)` | `= [−1 – 5, −1 + 5]` |
`= [−6 ,4]` |
`=> C`
Let `f: R -> R,\ f(x) = 1 - 2 cos ({pi x}/2).`
The period and range of this function are respectively
`B`
`text(Period)` | `= (2 pi)/n = (2pi)/(pi/2)=4` |
`text(Amplitude = 2 and median is)\ \ y=1.`
`text(Range)` | `= [1 – 2, quad 1 + 2]` |
`= [−1, 3]` |
`=> B`
State the range and period of the function
`h: R -> R,\ \ h(x) = 4 + 3 cos ((pi x)/2).` (2 marks)
`text(Range) = [1, 7];\ \ \ text(Period) = 4`
`-1` | `<cos ((pi x)/2)<1` | |
`-3` | `<3cos ((pi x)/2)<3` | |
`1` | `< 4+ 3cos ((pi x)/2)<7` |
`:.\ text(Range:)\ [1, 7]`
`text(Period) = (2pi)/n = (2 pi)/(pi/2) = 4`
Let `f: R -> R,\ f(x) = 2sin(3x) - 3.`
The period and range of this function are respectively
`A`
`text(Range:)\ [−3 – 2, −3 + 2]`
`= [−5,−1]`
`text(Period) = (2pi)/n = (2pi)/3`
`=> A`