SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

CHEMISTRY, M5 2024 HSC 30

An equilibrium mixture of hydrogen, carbon dioxide, water and carbon monoxide is in a closed, 1 L container at a fixed temperature as shown:

\(\ce{H2(g) +CO_2(g) \rightleftharpoons H2O(g) +CO(g)} \quad \quad K_{eq}=1.600\)

The initial concentrations are  \(\left[\ce{H2}\right]=1.000 \text{ mol L}^{-1}, \left[ \ce{CO2}\right]=0.500\ \text{mol L}^{-1},\ \left[\ce{H2O}\right]=0.400 \text{ mol L}^{-1}\)  and  \([ \ce{CO} ]=2.000 \text{ mol L} ^{-1}\).

An unknown amount of \(\ce{CO(g)}\) was added to the same container, and the temperature was kept constant. After the new equilibrium had been established, the concentration of \(\ce{H2O(g)}\) was found to be 0.200 mol L\(^{-1}\).

Using this information, calculate the unknown amount (in mol) of \(\ce{CO(g)}\) that was added to the container.   (4 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(4.92\ \text{mol}\)

Show Worked Solution
  • \(\ce{n_{intial}(CO(g))} = 0.400 \text{ and } \ce{n_{final}(CO(g))} = 0.200\).
  • \(\text{Change in the number of moles in } \ce{CO(g)} = 0.400-0.200 = 0.200\ \text{mol in } 1\ \text{L}\)

\begin{array} {|c|c|c|c|c|}
\hline & \ce{H2(g)} & \ce{CO2(g)} & \ce{H2O(g)} & \ce{CO2(g)} \\
\hline \text{Initial} & 1 & 0.5 & 0.4 & 2 + x \\
\hline \text{Change} & +0.2 & +0.2 & -0.2 & -0.2 \\
\hline \text{Equilibrium} & 1.2 & 0.7 & 0.2 & 1.8 + x \\
\hline \end{array}

  • Since all substances are present in a 1 L container, the concentrations of each substance is equal to the number of moles of that substance present at equilibrium
\(K_{eq}\) \(=\dfrac{\ce{[H2O(g)][CO(g)]}}{\ce{[H2(g)][CO2(g)]}}\)  
\(1.600\) \(=\dfrac{0.2 \times (1.8+x)}{1.2 \times 0.7}\)  
\(1.8 + x\) \(=1.6 \times \dfrac{1.2 \times 0.7}{0.2}\)  
\(x\) \(=6.72-1.8\)  
  \(=4.92\ \text{mol}\)  

 

  • 4.92 mol of \(\ce{CO(g)}\) were added to the container.
♦ Mean mark 55%.

Filed Under: Equilibrium Constant Tagged With: Band 5, smc-3671-20-Calcs given K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2024 HSC 23

Consider the following equilibrium system.

\(\ce{\left[Co \left(H_2O\right)_6\right]^{2+}(aq) + 4Cl^{-} (aq) \rightleftharpoons\left[CoCl_4\right]^{2-}(aq) +6H_2O (l)}\)

\(\ce{\left[Co\left(H_2O\right)_6\right]^{2+}(aq)}\)  is pink and  \(\ce{\left[CoCl_4\right]^{2-}(aq)}\)  is blue. When a solution of these ions and chloride ions is heated, the mixture becomes more blue.

Relate the observed colour change to the change in \(K_{e q}\).   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  • When the solution is heated and the mixture becomes more blue, it suggests that the concentration of \(\ce{\left[CoCl_4\right]^{2-}(aq)}\) is increasing.
  • The increase in temperature favoured the forward endothermic reaction and shifts the equilibrium position to the products.
  • Therefore the concentrations of \(\ce{\left[Co\left(H_2O\right)_6\right]^{2+}(aq)}\) and \(\ce{Cl^-(aq)}\) will decrease.
  • As  \(K_{eq}=\dfrac{\ce{\left[\left[CoCl4\right]^{2-}\right]}}{\ce{\bigl[\left[Co\left(H2O\right)6\right]^{2+}\bigr]\left[Cl^{-}\right]^4}}\),  \(K_{eq}\) will increase.
Show Worked Solution
  • When the solution is heated and the mixture becomes more blue, it suggests that the concentration of \(\ce{\left[CoCl_4\right]^{2-}(aq)}\) is increasing.
  • The increase in temperature favoured the forward endothermic reaction and shifts the equilibrium position to the products.
  • Therefore the concentrations of \(\ce{\left[Co\left(H_2O\right)_6\right]^{2+}(aq)}\) and \(\ce{Cl^-(aq)}\) will decrease.
  • As  \(K_{eq}=\dfrac{\ce{\left[\left[CoCl4\right]^{2-}\right]}}{\ce{\bigl[\left[Co\left(H2O\right)6\right]^{2+}\bigr]\left[Cl^{-}\right]^4}}\),  \(K_{eq}\) will increase.

Filed Under: Equilibrium Constant Tagged With: Band 4, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2023 HSC 20 MC

Nitrogen monoxide and oxygen combine to form nitrogen dioxide, according to the following equation.

\( \ce{2NO(g) + O2(g) \rightleftharpoons 2NO2(g) \quad $K$_{e q}=2.47 \times 10^{12}} \)

A 2.00 L vessel is filled with 1.80 mol of \( \ce{NO2(g)} \) and the system is allowed to reach equilibrium.

What is the equilibrium concentration of \( \ce{NO(g)} \)?

  1. \( \text{0.00 mol L}^{-1}\)
  2. \( 4.34 \times 10^{-5}\  \text{mol L}^{-1} \)
  3. \(6.90 \times 10^{-5}\  \text{mol L}^{-1}\)
  4. \(8.69 \times10^{-5}\  \text{mol L}^{-1}\)
Show Answers Only

\(D\)

Show Worked Solution
  • As 1.80 mol of \( \ce{NO2(g)} \) is added to the solution, the reverse reaction can be used to determine the equilibrium concentration of \( \ce{NO(g)} \).
  •    \(\ce{2NO2(g) \rightleftharpoons 2NO(g) + O2(g)}\)
  • Reverse reaction  \(K_{eq} = \dfrac{\ce{[O_2][NO]^2}}{\ce{[NO_2]^2}}\)
  • Forward reaction  \(K_{eq}\) is the inverse of \(K_{eq}\) of the reverse reaction:
  •    \(K_{eq}=\dfrac{1}{2.47 \times 10^{12}}=4.0486 \times 10^{-13}\)

\begin{array} {|l|c|c|c|}
\hline  & \ce{2NO_2(g)} & \ce{2NO(g)} & \ce{O_2(g)} \\
\hline \text{Initial} & \ \ \ \ 0.9 & \ \ \ \ 0 & 0 \\
\hline \text{Change} & -2x & +2x & \ \ \ +x \\
\hline \text{Equilibrium} & \ \ \ \ 0.9 -2x & \ \ \ \ 2x & \ \ \ \ \ \ x \\
\hline \end{array}

  • \(-2x\) is very small as the \(K_{eq}\) for the reaction is very small, thus  \(0.9-2x \approx 0.9\).
  • By substituting the values into the \(K_{eq}\) for the reverse reaction: 
\(4.0486 \times 10^{-13}\) \(=\dfrac{(x)(2x)^2}{(0.9)^2}\)  
\(4.0486 \times 10^{-13}\) \(=\dfrac{4x^3}{(0.9)^2}\)  
\(4x^3\) \(=3.279 \times 10^{-13}\)  
\(x\) \(=4.344 \times 10^{-5}\)  

 

  • \(\ce{[NO2] = 2 \times 4.344 \times 10^{-5} = 8.69 \times 10^{-5}\ \text{mol L}^{-1}}\)

\(\Rightarrow D\)

♦♦ Mean mark 34%.

Filed Under: Equilibrium Constant Tagged With: Band 5, smc-3671-20-Calcs given K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2023 HSC 37

When performing industrial reductions with \(\mathrm{CO}(\mathrm{g})\), the following equilibrium is of great importance.

\( \ce{2CO(g) \rightleftharpoons CO2(g) + C(s) \quad \quad $K$_{e q}  = 10.00  at 1095 K } \)

A 1.00 L sealed vessel at a temperature of 1095 K contains \( \ce{CO(g)} \) at a concentration of 1.10 × 10\(^{-2}\) mol L\(^{-1}\), \(\ce{CO2(g)} \) at a concentration of 1.21 × 10\(^{-3}\) mol L\(^{-1}\), and excess solid carbon.

  1. Is the system at equilibrium? Support your answer with calculations.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

  1. Carbon dioxide gas is added to the system above and the mixture comes to equilibrium. The equilibrium concentrations of \( \ce{CO(g)}\) and \(\ce{CO2(g)} \) are equal. Excess solid carbon is present and the temperature remains at 1095 K.

    Calculate the amount (in mol) of carbon dioxide added to the system.   (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(Q=\dfrac{\ce{[CO2]}}{\ce{[CO]^2}}=\dfrac{1.21 \times 10^{-3}}{(1.10 \times 10^{-2})^2}=10.0\)

\(\text{Since}\ \ Q=K_{eq},\ \text{system is in equilibrium.}\)
 

b.    \(0.143\ \text{mol} \)

Show Worked Solution

a.    \(Q=\dfrac{\ce{[CO2]}}{\ce{[CO]^2}}=\dfrac{1.21 \times 10^{-3}}{(1.10 \times 10^{-2})^2}=10.0\)

\(\text{Since}\ \ Q=K_{eq},\ \text{system is in equilibrium.}\)
 

b.    \(\ce{\text{Given}\ \ [CO]=[CO2]}, \)

\(K_{eq} =\dfrac{\ce{[CO2]}}{\ce{[CO]^2}} =\dfrac{1}{\ce{[CO]}} = 10.00\)

\(\Rightarrow \ce{[CO] = \dfrac{1}{10.00} = 0.1000 \text{mol L}^{-1}} \)

\(\Rightarrow \ce{[CO2] = 0.1000 \text{mol L}^{-1}} \)

From this point, the change in \(\ce{CO}\) and \(\ce{CO2}\) concentrations can be calculated…

♦♦♦ Mean mark (b) 24%.

\begin{array} {|l|c|c|c|}
\hline  & \ce{2CO(g)} & \ce{CO2(g)} & \ce{C(s)} \\
\hline \text{Initial} & 1.10 \times 10^{-2} &  1.21 \times 10^{-3} &  \\
\hline \text{Change} & +0.0890 & +0.0988 &  \\
\hline \text{Equilibrium} & \ \ \ 0.1000 & \ \ \ 0.1000 &  \\
\hline \end{array}

However, the change in moles of \(\ce{CO2}\) in the system consists of:

  • Change in \(\ce{CO2}\) concentration
  • Change in \(\ce{CO}\) concentration (as some of the added \(\ce{CO2}\) was converted into \(\ce{CO}\))

\(\ce{n(CO2)\ \text{required to increase}\ [CO] by 0.0988\ \text{mol}\ \ \ \text{(1 litre vessel)}}\)

\(\ce{\text{Formula ratio shows}\ \ CO2:CO = 1\ \text{mol} : 2\ \text{mol}} \)

\(\ce{n(CO2)\ \text{to add to increase}\ [CO2] = 0.0988\ \text{mol}\ \ \ \text{(1 litre vessel)}}\)

\(\ce{n(CO2)_{\text{total to add}} = 0.0988\ \text{mol} + n(CO2\ \text{to make CO)}} \)

\(\ce{n(CO2)\ \text{to add to increase}\ [CO] = \dfrac{0.0890}{2} = 0.0445\ \text{mol}}\)

\(\ce{n(CO2)_{\text{total to add}} = 0.0988 + 0.0445 = 0.143\ \text{mol}} \)

Filed Under: Equilibrium Constant Tagged With: Band 4, Band 6, smc-3671-20-Calcs given K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 EQ-Bank 22

Hydrogen gas reacts with iodine gas to form hydrogen iodide according to the following equation.

\( \ce{H2(g) + I2(g) \rightleftharpoons 2HI(g)}\) at 700 k

At equilibrium, the concentrations for \(\ce{H2, I2}\) and \(\ce{HI}\) are as follows:  0.326 mol L–1, 0.326 mol L–1 and 2.39 mol L–1 respectively.

What is the value of the equilibrium constant for this reaction?  (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

53.7

Show Worked Solution

\[\ce{$K_{eq}$ = \frac{[HI]^2}{[H2][I2]} = \frac{2.39^2}{[0.326][0.326]} = 53.7}\]

Filed Under: Equilibrium Constant Tagged With: Band 3, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 EQ-Bank 3 MC

Consider the following reaction.

\( \ce{2NOCl(g) \rightleftharpoons 2NO(g) + Cl2(g)}\).

What is the equilibrium expression for this reaction?

  1. \(\dfrac{\ce{2[NO][Cl2]}}{\ce{2[NOCl]}}\)
  2. \(\dfrac{\ce{[NO]^2[Cl2]}}{\ce{[NOCl]^2}}\)
  3. \(\dfrac{\ce{2[NOCl]}}{\ce{2[NO][Cl2]}}\)
  4. \(\dfrac{\ce{[NOCl]^2}}{\ce{2[NO]^2[Cl2]}} \)
Show Answers Only

`B`

Show Worked Solution
  • All elements in the reaction are included in the \(\ce{$K_{eq}$}\) expression (i.e. no solids or pure liquids are present which would be omitted).
  •    \(\ce{$K_{eq}$} = \dfrac{\ce{[NO]^2[Cl2]}}{\ce{[NOCl]^2}}\)

\(\Rightarrow B\)

Filed Under: Equilibrium Constant Tagged With: Band 3, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2019 HSC 31

The following reaction occurs in an aqueous solution.

   \(\ce{HgCl4^2-(aq) + Cu^2+(aq) \rightleftharpoons CuCl4^2-(aq) + Hg^2+\ \ \ \ \ \ $K_{eq}$ = 4.55 \times 10^{-11}}\)

A solution containing a mixture of \(\ce{HgCl4^2-(aq)}\) and \(\ce{Cu^2+(aq)}\) ions is prepared. The initial concentration of each ion is 0.100 mol L ¯1 and there are no other ions present.

Calculate the concentration of \(\ce{Hg^2+(aq)}\) ions once the system has reached equilibrium.   (4 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\ce{[Hg^2+] = 6.75 \times 10^{-7} mol L^{-1}}\)

Show Worked Solution

\[\ce{$K_{eq}$ = \frac{[CuCl4^2-][Hg^2+]}{[HgCl4^2-][Cu^2+]}}\]

\begin{array} {|l|c|c|c|c|}
\hline  & \ce{[HgCl4^2-]} & \ce{[Cu^2+]} & \ce{[CuCl4^2-]} & \ce{[Hg^2+]} \\
\hline \text{Initial} & 0.100 & 0.100 & 0 & 0 \\
\hline \text{Change} & -x & -x & +x & +x \\
\hline \text{Equilibrium} & 0.100-x & 0.100-x & x & x \\
\hline \end{array}

Since `x` is small  `=> 0.100-x~~0.100`

`4.55 xx 10^{-11}` `=(x xx x)/((0.100-x)(0.100-x))`  
`4.55 xx 10^{-11}` `=x^2/(0.100)^2`  
`x^2` `=4.55 xx 10^{-11} xx (0.100)^2`  
`x` `=sqrt(4.55 xx 10^{-11} xx (0.100)^2)`  
  `=6.75 xx 10^{-7}\ text{mol L}^{-1}`  

 
\(\therefore \ce{[Hg^2+] = 6.75 \times 10^{-7} mol L^{-1}}\)

Filed Under: Equilibrium Constant Tagged With: Band 4, smc-3671-20-Calcs given K(eq), smc-3671-35-Chemical equation given, smc-3671-60-Ionic solutions

CHEMISTRY, M6 2019 HSC 27

The relationship between the acid dissociation constant, `K_a`, and the corresponding conjugate base dissociation constant, `K_b`, is given by:

`K_(a)xxK_(b)=K_(w)`

Assume that the temperature for part (a) and part (b) is 25°C.

  1. The `K_a` of hypochlorous acid `text{(HOCl)}` is  `3.0 xx10^(-8)`.
  2. Show that the `K_b` of the hypochlorite ion, `text{OCl}^-`, is  `3.3 xx10^(-7)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. The conjugate base dissociation constant, `K_b`, is the equilibrium constant for the following equation:
  4.      `text{OCl}^(-)(aq)+ text{H}_(2) text{O}(l) ⇌ text{HOCl}(aq)+ text{OH}^(-)(aq)`
  5. Calculate the pH of a 0.20 mol L¯1 solution of sodium hypochlorite `(text{NaOCl})`.   (4 mark)

    --- 14 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `K_b=3.3 xx 10^{-7}`
  2. \(\ce{pH = 14-3.59 = 10.41}\)
Show Worked Solution

a.   `K_(a)xxK_(b)=K_(w)\ \ =>\ \ K_b=(K_(w))/(K_(a))`

`K_b=(1.0 xx 10^{-14})/(3.0 xx 10^{-8}=3.3 xx 10^{-7}`
 

b.   \(\ce{OCl-(aq) + H2O(l) \rightleftharpoons HOCl(aq) + OH-(aq)}\)
 

\begin{array} {|l|c|c|c|}
\hline  & \ce{OCl-} & \ce{HOCl} & \ce{OH–} \\
\hline \text{Initial} & 0.20 & 0 & 0 \\
\hline \text{Change} & -x & +x & +x \\
\hline \text{Equilibrium} & 0.20-x & x & x \\
\hline \end{array}

 
\[ K_b = \ce{\frac{[HOCl][OH– ]}{[OCl-]}} = \frac{x^2}{(0.20-x)} \]

Assume  `0.20-x~~0.20`  because `x` is negligible:

`3.3 xx 10^(-7)` `= x^2 / (0.20-x)`  
`x` `=sqrt(3.3 xx 10^(−7) xx 0.20)`  
  `= 2.5690 xx 10^{-4}\ text{mol L}^(–1)`  

 
\(\ce{[OH-] = 2.5690 \times 10^{-4} mol L^{-1}}\)

\(\ce{pOH = -log10[OH-] = -log10(2.5690 \times 10^{-4}) = 3.59}\)

\(\therefore \ce{pH = 14-3.59 = 10.41}\)


♦ Mean mark (b) 45%.

Filed Under: Bronsted-Lowry Theory, Equilibrium Constant, Quantitative Analysis Tagged With: Band 4, Band 5, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given, smc-3671-40-K(eq) and pH, smc-3671-50-Acids and bases, smc-3674-10-Calculations Involving pH, smc-3675-30-Ka/Kb

CHEMISTRY, M5 2019 HSC 16 MC

At equilibrium, a 1.00 L vessel contains 0.0430 mol of \(\ce{H2}\), 0.0620 mol of \(\ce{I2}\), and 0.358 mole of \(\ce{HI}\). The system is represented by the following equation:

\(\ce{H2(g) + I2(g) \rightleftharpoons 2HI(g)}\)

Which of the following is closest to the value of the equilibrium constant, \(K_{eq}\), for this reaction?

  1. 0.0208
  2. 48.1
  3. 134
  4. 269
Show Answers Only

\(B\)

Show Worked Solution
\(K_{eq}\) \(= \dfrac{\ce{[HI]^2}}{\ce{[H_2][I_2]}} \)  
  \(=\dfrac{0.358^2}{(0.0430)(0.0620)}\)  
  \(=48.1\)  

 
\(\Rightarrow B\)

Filed Under: Equilibrium Constant Tagged With: Band 3, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2020 HSC 35

In aqueous solution, iodide ions `(text{I}^-)`react rapidly with iodine `(text{I}_2)` to form triiodide ions `text{I}_(3)^(\ -)`, making the equilibrium system shown in the chemical equation:

`text{I}^(-)(aq)+ text{I}_(2)(aq) ⇌ text{I}_(3)^(\ -)(aq)`

The following relationships can be derived from the reaction mechanism:

`[text{I}^(-)]_(eq)=2[text{I}_(2)]_(eq)`

`[text{I}^(-)]_(i nitial)=4[text{I}_(2)]_(eq)+3[text{I}_(3)^(\ -)]_(eq)`

where 'initial' designates the initial concentration and 'eq' designates the equilibrium concentration.

The absorbance of the solution in the UV-Vis spectrum is given by:

`A=[text{I}_(3)^(\ -)]xx2.76 xx10^(4)`

Determine the value of the equilibrium constant, given that  `A = 0.745`  at equilibrium and  `[text{I}^(-)]_(i nitial )=7.00 xx10^(-4)\ text{mol L}^(-1)`.   (4 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`K_text{eq}= 564`

Show Worked Solution
`text{A}` \(\ce{= [I3–]_{eq} \times 2.76 × 10^4}\)
`0.745` \(\ce{= [I3–]_{eq} \times 2.76 × 10^4}\)
\(\ce{[I3–]_{eq}}\) `= 2.70 \times 10^(−5)\ text{mol L}^(–1)`

 

\(\ce{[I– ]_{initial}}\) \(\ce{= 4[I2 ]_{eq} + 3 [I3– ]_{eq}}\)
`7.00 xx 10^(−4)` `= 4 [text{I}_2 ]_text{eq} + (3 xx 2.70 xx 10^(−5))`
\(\ce{[I2 ]_{eq}}\) `=(7.00 xx 10^(−4)-(3 xx 2.70 xx 10^(−5)))/4`
  `= 1.55 xx 10^(−4)\ text{mol L}^(–1)`

 

`[text{I}^– ]_text(eq) = 2 [text{I}_2 ]_text(eq) = 2 xx (1.55 xx 10^(−4)) = 3.10 xx 10^(−4)\ text{mol L}^(–1)`

 

`K_text{eq}` `=[text{I}_3\^(\ -)]_text(eq) /[[text{I}^–]_text(eq) xx [text{I}_2]_text(eq)]`
  `= [2.70 xx 10^(−5)] / [3.10 xx 10^(−4) xx 1.55 xx 10^(−4)]`
  `= 564`

Mean mark 55%.

Filed Under: Equilibrium Constant, Solution Equilibria Tagged With: Band 5, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given, smc-3671-60-Ionic solutions, smc-3672-10-Mixed ionic solutions

CHEMISTRY, M5 2022 HSC 13 MC

Nitrosyl bromide decomposes according to the following equation.

\(\ce{2NOBr(g)  \rightleftharpoons  2NO(g) + Br2(g)}\)

A 0.64 mol sample of \(\ce{NOBr}\) is placed in an evacuated 1.00 L flask. After the system comes to equilibrium, the flask contains 0.46 mol \(\ce{NOBr}\).

What are the concentrations of \(\ce{NO}\) and \(\ce{Br2}\) in the flask at equilibrium?

\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1.2ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1.2ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1.2ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1.2ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|c|c|}
\hline\ce{[NO]}\left( \text{mol L}^{-1}\right) &  \ce{\left[Br_2\right]} \left(\text{mol L}^{-1}\right)\\
\hline \rule{0pt}{2.5ex}0.18 \rule[-1ex]{0pt}{0pt}& 0.09 \\
\hline \rule{0pt}{2.5ex}0.18 \rule[-1ex]{0pt}{0pt}& 0.18 \\
\hline \rule{0pt}{2.5ex}0.36 \rule[-1ex]{0pt}{0pt}& 0.18 \\
\hline \rule{0pt}{2.5ex}0.92 \rule[-1ex]{0pt}{0pt}& 0.46 \\
\hline
\end{array}
\end{align*}

Show Answers Only

`A`

Show Worked Solution

\begin{array} {|l|c|c|c|}
\hline  & \text{NOBr} & \text{NO} & \text{Br}_2 \\
\hline \text{Initial} & 0.64 & 0 & 0 \\
\hline \text{Change} & -0.18 & +0.18 & +0.09 \\
\hline \text{Equilibrium} & 0.46 & 0.18 & 0.09 \\
\hline \end{array}

 
`[text{NO}] = 0.18\ text{mol L}^-1`

`[text{Br}_2] = 0.09\ text{mol L}^-1`

`=> A`

Filed Under: Equilibrium Constant, Factors that Affect Equilibrium Tagged With: Band 4, smc-3670-30-Concentration, smc-3671-35-Chemical equation given

CHEMISTRY, M5 2022 HSC 8 MC

A system is described as follows.

\(\ce{2NaHCO3(s)  \rightleftharpoons Na2CO3(s) + CO2(g) + H2O(g)}\)

What is the equilibrium expression for this system?

  1. `K_{eq}=[\text{CO}_2]`
  2. `K_{eq}=[\text{CO}_2][\text{H}_2\text{O}]`
  3. `K_{eq}=(1)/([\text{CO}_2][\text{H}_2\text{O}])`
  4. `K_{eq}=([\text{Na}_2\text{CO}_3][\text{CO}_2][\text{H}_2\text{O}])/[\text{NaHCO}_3]^(2)`
Show Answers Only

`B`

Show Worked Solution
  • The concentrations of solids and pure liquids are omitted from the equilibrium expression because they have a constant concentration.
  • Thus, the equilibrium expression is:
  •    `K_(eq) = [text{CO}_2] [text{H}_2 text{O}]`

`=> B`

Filed Under: Equilibrium Constant Tagged With: Band 4, smc-3671-10-Find K(eq), smc-3671-35-Chemical equation given

CHEMISTRY, M5 2021 HSC 31

Ammonia is produced according to the following equilibrium equation.

   \(\ce{N2($g$) + 3H2($g$)\rightleftharpoons 2NH3($g$)}\)

There are 4.50 moles of nitrogen gas, 1.00 mole of hydrogen gas and 5.80 moles of ammonia in a 10.0 L vessel. The system is at equilibrium at 298 K. The value of `K_{eq}` at this temperature is 748 .

How many moles of nitrogen gas need to be added to the vessel to increase the amount of ammonia by 0.050 moles?   (4 marks)

Show Answers Only
  `text{N}_2`  `\ \ +\ \ `   `3 text{H}_2`   `⇋`   `\ \ 2 text{NH}_3`
Initial `(4.5 + x)\ text{moles}`   `1.0\ text{moles}`   `5.8\ text{moles}`
Change `− 0.025\ text{moles}`   `− 0.075\ text{moles}`   `+ 0.05\ text{moles}`
Equilibrium   `(4.475 + x)\ text{moles}`   `0.925\ text{moles}`   `5.85\ text{moles}`
Equilibrium 
concentration  
`[4.475 + x] / 10\ text{mol L}^ (–1)`    `0.0925\ text{mol L}^(–1)`   `0.585\ text{mol L}^(–1)`

 
`K_(eq) = [NH_3]^2 / [[N_2] [H_2]^3] `

`748 = 0.585^2 / [(4.475 + x) / 10 xx 0.0925^3]`

`748 xx (4.475 + x) / 10 xx 0.0925^3 = 0.585^2`

`(4.475 + x)/10` `= 0.585^2 / [748 xx 0.0925^3]`  
`4.475+x` `=[10 xx 0.585^2] / [748 xx 0.0925^3]`  
`x` `=[10 xx 0.585^2] / [748 xx 0.0925^3]-4.475`  
  `=1.3\ text{moles (1 d.p.)}`  

 
∴ 1.3 moles of nitrogen must be added to the equilibrium mixture.

Show Worked Solution
  `text{N}_2`  `\ \ +\ \ `   `3 text{H}_2`   `⇋`   `\ \ 2 text{NH}_3`
Initial `(4.5 + x)\ text{moles}`   `1.0\ text{moles}`   `5.8\ text{moles}`
Change `− 0.025\ text{moles}`   `− 0.075\ text{moles}`   `+ 0.05\ text{moles}`
Equilibrium   `(4.475 + x)\ text{moles}`   `0.925\ text{moles}`   `5.85\ text{moles}`
Equilibrium 
concentration  
`[4.475 + x] / 10\ text{mol L}^ (–1)`    `0.0925\ text{mol L}^(–1)`   `0.585\ text{mol L}^(–1)`

 
`K_(eq) = [NH_3]^2 / [[N_2] [H_2]^3] `

`748 = 0.585^2 / [(4.475 + x) / 10 xx 0.0925^3]`

`748 xx (4.475 + x) / 10 xx 0.0925^3 = 0.585^2`

`(4.475 + x)/10` `= 0.585^2 / [748 xx 0.0925^3]`  
`4.475+x` `=[10 xx 0.585^2] / [748 xx 0.0925^3]`  
`x` `=[10 xx 0.585^2] / [748 xx 0.0925^3]-4.475`  
  `=1.3\ text{moles (1 d.p.)}`  

 
∴ 1.3 moles of nitrogen must be added to the equilibrium mixture.


♦ Mean mark 44%.

Filed Under: Equilibrium Constant Tagged With: Band 5, smc-3671-20-Calcs given K(eq), smc-3671-35-Chemical equation given

Copyright © 2014–2025 SmarterEd.com.au · Log in