The following three solids were added together to 1 litre of water:
- \(\ce{0.006\ \text{mol}\ Mg(NO3)2}\)
- \(\ce{0.010\ \text{mol}\ NaOH}\)
- \(\ce{0.002\ \text{mol}\ Na2CO3}\).
Which precipitate(s), if any, will form? Justify your answer with appropriate calculations. (5 marks)
--- 10 WORK AREA LINES (style=lined) ---
All sodium and nitrate salts are soluble \(\Rightarrow\) possible precipitates are \(\ce{Mg(OH)2}\) and \(\ce{MgCO3}\).
\(\ce{\left[Mg^{2+}\right]=6 \times 10^{-3} \quad\left[ OH^{-}\right]=1 \times 10^{-2} \quad\left[ CO3^{2-}\right]=2 \times 10^{-3}}\)
\(\ce{\left[Mg^{2+}\right]\left[ OH^{-}\right]^2=6 \times 10^{-7} \quad \quad \quad \ \ \ K_{\textit{sp}}=5.61 \times 10^{-12}}\)
\(\ce{\left[ Mg^{2+}\right]\left[ CO3^{2-}\right]=1.2 \times 10^{-5} \quad \quad K_{\textit{sp}}=6.82 \times 10^{-6}}\)
\(\ce{Mg(OH)2}\) is a lot less soluble than \(\ce{MgCO3}\) and will precipitate preferentially.
\(\ce{\left[Mg^{2+}\right]\left[OH^{-}\right]^2 > K_{\textit{sp}}}\)
\(\Rightarrow \ce{Mg(OH)2}\) will precipitate.
\(\ce{Mg^{2+}(aq) + 2OH-(aq) \rightarrow Mg(OH)2(s)}\)
Since \(K_{\textit{sp}}\) is small, assume reaction goes to completion.
\(\ce{n(Mg^{2+})=0.006\ mol, n(OH^{-})=0.010\ mol}\)
Using stoichiometric ratio \((1:2)\)
\(0.006 > \dfrac{0.010}{2}=0.005\ \ \Rightarrow \ce{Mg^{2+}}\) is in excess.
Concentration drops to: \(6 \times 10^{-3}-5 \times 10^{-3}=1 \times 10^{-3}\).
Check if \(\ce{MgCO3}\) will precipitate:
\(\ce{\left[Mg^{2+}\right]\left[CO3^{2-}\right]}\) becomes \(2 \times 10^{-6} <K_{\textit{sp}}\).
\(\ce{\Rightarrow\ MgCO3}\) won’t precipitate.
All sodium and nitrate salts are soluble \(\Rightarrow\) possible precipitates are \(\ce{Mg(OH)2}\) and \(\ce{MgCO3}\).
\(\ce{\left[Mg^{2+}\right]=6 \times 10^{-3} \quad\left[ OH^{-}\right]=1 \times 10^{-2} \quad\left[ CO3^{2-}\right]=2 \times 10^{-3}}\)
\(\ce{\left[Mg^{2+}\right]\left[ OH^{-}\right]^2=6 \times 10^{-7} \quad \quad \quad \ \ \ K_{\textit{sp}}=5.61 \times 10^{-12}}\)
\(\ce{\left[ Mg^{2+}\right]\left[ CO3^{2-}\right]=1.2 \times 10^{-5} \quad \quad K_{\textit{sp}}=6.82 \times 10^{-6}}\)
\(\ce{Mg(OH)2}\) is a lot less soluble than \(\ce{MgCO3}\) and will precipitate preferentially.
\(\ce{\left[Mg^{2+}\right]\left[OH^{-}\right]^2 > K_{\textit{sp}}}\)
\(\Rightarrow \ce{Mg(OH)2}\) will precipitate.
\(\ce{Mg^{2+}(aq) + 2OH-(aq) \rightarrow Mg(OH)2(s)}\)
Since \(K_{\textit{sp}}\) is small, assume reaction goes to completion.
\(\ce{n(Mg^{2+})=0.006\ mol, n(OH^{-})=0.010\ mol}\)
Using stoichiometric ratio \((1:2)\)
\(0.006 > \dfrac{0.010}{2}=0.005\ \ \Rightarrow \ce{Mg^{2+}}\) is in excess.
Concentration drops to: \(6 \times 10^{-3}-5 \times 10^{-3}=1 \times 10^{-3}\).
Check if \(\ce{MgCO3}\) will precipitate:
\(\ce{\left[Mg^{2+}\right]\left[CO3^{2-}\right]}\) becomes \(2 \times 10^{-6} <K_{\textit{sp}}\).
\(\ce{\Rightarrow\ MgCO3}\) won’t precipitate.