Evaluate \(e^3\), giving your answer to 3 significant figures. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Evaluate \(e^3\), giving your answer to 3 significant figures. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
\(e^3=20.1 \ \text{(3 sig fig)}\)
\(e^3=20.085 \ldots=20.1 \ \text{(3 sig fig)}\)
Evaluate \(5^{\tfrac{1}{3}}\), giving your answer to 3 significant figures. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
\(5^{\tfrac{1}{3}}=1.71 \ \text{(3 sig fig)}\)
\(\text{By calculator:}\)
\(5^{\tfrac{1}{3}}=1.709 \ldots=1.71 \ \text{(3 sig fig)}\)
Simplify \(\left(2 k^3\right)^2\). (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
\(4 k^6\)
| \(\left(2 k^3\right)^2\) | \(=2^2 \times\left(k^3\right)^2\) |
| \(=4 k^6\) |
Show \(f(x)=\dfrac{1}{2}-\dfrac{1}{2^x+1}\) is an odd function. (3 marks) --- 10 WORK AREA LINES (style=lined) --- \(\text{Odd}\ \ \Rightarrow \ \ f(-x)=-f(x)\) \(\begin{aligned} \(\text{Odd}\ \ \Rightarrow \ \ f(-x)=-f(x)\) \(\begin{aligned}
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)
\(\therefore f(x) \text { is odd.}\)
f(x) & =\dfrac{1}{2}-\dfrac{1}{2^x+1} \\
f(-x) & =\dfrac{1}{2}-\dfrac{1}{2^{-x}+1} \times \dfrac{2^x}{2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x}{1+2^x} \\
& =\dfrac{1}{2}-\dfrac{2^x+1-1}{2^x+1} \\
& =\dfrac{1}{2}-1+\dfrac{1}{2^x+1} \\
& =-\dfrac{1}{2}+\dfrac{1}{2^x+1} \\
& =-f(x)
\end{aligned}\)
\(\therefore f(x) \text { is odd.}\)
Solve the equation \(8^{n+3}=\dfrac{1}{2}\) (2 marks) --- 5 WORK AREA LINES (style=lined) --- \(n=-\dfrac{10}{3} \)
\(8^{n+3}\)
\(=\dfrac{1}{2}\)
\(2^{3(n+3)}\)
\(=2^{-1}\)
\(3n+9\)
\(=-1\)
\(3n\)
\(=-10\)
\(n\)
\(=-\dfrac{10}{3} \)
Solve the following equation for \(x\):
\(2^{2x}=3(2^{x+1})-8\). (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
\(x=1\ \ \text{or} \ \ 2\)
| \(2^{2x}\) | \(=3(2^{x+1})-8\) | |
| \(2^{2x}\) | \(=3(2 \times 2^{x})-8\) | |
| \(0\) | \(=2^{2x}-6\cdot2^{x}+8\) |
\(\text{Let}\ \ X=2^{x}\)
| \(X^2-6X+8\) | \(=0\) | |
| \((X-4)(X-2)\) | \(=0\) | |
| \(X\) | \(=4\ \ \text{or}\ \ 2\) |
\(2^{x}=4\ \ \Rightarrow\ \ x=2\)
\(2^{x}=2\ \ \Rightarrow\ \ x=1\)
Find `x` given `100^(x-2) = 1000^x`. (2 marks)
`-4`
| `100^(x-2)` | `= 1000^x` |
| `(10^2)^(x-2)` | `= (10^3)^x` |
| `10^(2x-4)` | `= (10)^(3x)` |
| `2x-4` | `=3x` |
| `:. x` | `= -4` |
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. `-1/3`
b. `0.462`
a. `1/(root3(7+pi)) = (7+pi)^(-1/3)`
| b. | `1/(root3(7+pi))` | `=0.4619…` |
| `=0.462\ \ text{(3 sig. fig.)}` |
What is the value of `p` so that `(a^2a^(-3))/sqrt a = a^p`?
`B`
| `(a^2 a^(-3))/a^(1/2)` | `= a^(-1) xx a^(-1/2)` |
| `= a^(-3/2)` |
`=> B`
Solve the equation `3^(-4x) = 9^(6-x)` for `x.` (2 marks)
`-6`
| `3^(-4x)` | `= (3^2)^(6-x)` |
| `3^(-4x)` | `=3^(12-2x)` |
| ` -4x` | `= 12-2x` |
| `2x` | `=-12` |
| `:. x` | `=-6` |
Solve the equation `2^(3x-3) = 8^(2-x)` for `x`. (2 marks)
`3/2`
| `2^(3x-3)` | `= 2^(3(2-x))` |
| `3x-3` | `= 6-3x` |
| `6x` | `= 9` |
| `:. x` | `= 3/2` |
Evaluate `e^(−0.5)` correct to three decimal places. (2 marks)
`0.607\ \ text{(to 3 d.p.)}`
| `e^(−0.5)` | `= 0.6065…` |
| `= 0.607\ \ text{(to 3 d.p.)}` |
Let `f(x)=1+e^x`.
Show that `f(x)xxf(–x)=f(x)+f(–x)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions).}`
`f(x)xxf(–x)`
`=(1+e^x)(1+e^-x)`
`=1+e^-x+e^x+e^xe^-x`
`=e^x+e^-x+2`
`f(x)+f(–x)`
`=1+e^x+1+e^-x`
`=e^x+e^-x+2`
`=f(x)xxf(–x)\ \ …\ text(as required)`
Solve `2^(2x+1)=32`. (2 marks)
`x=2`
| `2^(2x+1)` | `=32` |
| `2^(2x+1)` | `=2^5` |
| `2x+1` | `=5` |
| `:. x` | `=2` |