SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2023 VCAA 6 MC

Suppose that \(\displaystyle \int_{3}^{10} f(x)\,dx=C\)  and  \(\displaystyle \int_{7}^{10} f(x)\,dx=D\). The value of \(\displaystyle \int_{7}^{3} f(x)\,dx\) is

  1. \(C+D\)
  2. \(C+D-3\)
  3. \(C-D\)
  4. \(D-C\)
  5. \(CD-3\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Given }\displaystyle \int_{3}^{10} f(x)\,dx=C\ \ \text{and}\ \displaystyle \int_{7}^{10} f(x)\,dx=D\)

\(\text{We can deduce:}\)

 \(\displaystyle \int_{3}^{10} f(x)\,dx\) \(=\displaystyle \int_{3}^{7} f(x)\,dx+\displaystyle \int_{7}^{10} f(x)\,dx\)
\(C\) \(=\displaystyle \int_{3}^{7} f(x)\,dx+D\)
\(C-D\) \(=\displaystyle \int_{3}^{7} f(x)\,dx\)
\(\therefore\ \displaystyle \int_{7}^{3} f(x)\,dx\) \(=D-C\)

 
\(\Rightarrow D\)


♦ Mean mark 49%.
MARKER’S COMMENT: 41% of students chose option C incorrectly assuming \(\int_{7}^3 f(x)\,dx=\int_{3}^7 f(x)\,dx\).

Filed Under: Area Under Curves Tagged With: Band 5, smc-723-70-Other

Calculus, MET1 2022 VCAA 7

A tilemaker wants to make square tiles of size 20 cm × 20 cm.

The front surface of the tiles is to be painted with two different colours that meet the following conditions:

  • Condition 1 - Each colour covers half the front surface of a tile.
  • Condition 2 - The tiles can be lined up in a single horizontal row so that the colours form a continuous pattern.

An example is shown below.
 

There are two types of tiles: Type A and Type B.

For Type A, the colours on the tiles are divided using the rule `f(x)=4 \sin \left(\frac{\pi x}{10}\right)+a`, where `a \in R`.

The corners of each tile have the coordinates (0,0), (20,0), (20,20) and (0,20), as shown below.
 

  1.  i. Find the area of the front surface of each tile.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

    ii. Find the value of `a` so that a Type A tile meets Condition 1.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---


Type B tiles, an example of which is shown below, are divided using the rule `g(x)=-\frac{1}{100} x^3+\frac{3}{10} x^2-2 x+10`.
 

  1. Show that a Type B tile meets Condition 1.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Determine the endpoints of `f(x)` and `g(x)` on each tile. Hence, use these values to confirm that Type A and Type B tiles can be placed in any order to produce a continuous pattern in order to meet Condition 2.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.i.    `400` cm²

a.ii.   `a = 10`

b.     `200` cm²

c.     See worked solution

Show Worked Solution
a.i   Area `= 20 xx 20`  
  `= 400` cm²  

  
a.ii  `a = 10`
 

b.   Area `=\int_0^{20} \frac{-x^3}{100}+\frac{3 x^2}{10}-2 x+10\ d x`  
  `=\left[\frac{-x^4}{400}+\frac{x^3}{10}-x^2+10 x\right]_0^{20}`  
  `=\left[-\frac{20^4}{400}+\frac{20^3}{10}-20^2+10 xx 20\right]-\left[0\right]`  
  `= – 400 +800 -400 +200`  
  `= 200` cm²  

 
`:.` The area of the coloured section of the Type B tile is 200 cm² which is half the 400 cm² area of the tile.
 

c.   
`f(0)` `=4 \sin \left(\frac{\pi(0)}{10}\right)+10 = 10`  
  `f(20)` `=4 \sin (2 \pi)+10 = 10`  
  `g(0)` `=\frac{-0}{100}+\frac{3(0)}{10}-2(0)+10=10`  
  `g(20)` `=-\frac{8000}{100}+\frac{200}{10}-2(20)+10 = 10`  

 
→`\ f(0) = f(20) = g(0) = g(20) =10`
 

`:.`    The endpoints for `f(x)` are `(0,10)` and `(20,10)` and for `g(x)` are also `(0,10)` and `(20,10)`.

So the tiles can be placed in any order to make the continuous pattern.


♦♦ Mean mark (c) 30%.
MARKER’S COMMENT: Students often only found `f(20)` and `g(20)`, however, `f(0)` and `g(0)` also needed to be found to verify the pattern match.

Filed Under: Area Under Curves, Standard Integration Tagged With: Band 4, Band 6, smc-2757-10-Sin, smc-723-70-Other, smc-749-20-Definite Integrals

Calculus, MET2 2020 VCAA 1

Let  `f:R rarr R, \ f(x)=a(x+2)^(2)(x-2)^(2)`, where `a in R`. Part of the graph of `f` is shown below. 
 

  1. Show that  `a = 1/4`.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Express  `f(x)=(1)/(4)(x+2)^(2)(x-2)^(2)`  in the form  `f(x)=(1)/(4)x^(4)+bx^(2)+c`  where `b` and `c` are integers.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Part of the graph of the derivative function  `f^{′}` is shown below.
 
     
 

  1.  i. Write the rule for `f^{′}` in terms of `x`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. ii. Find the minimum value of the graph of `f^{′}` on the interval  `x in (0, 2)`.   (2 marks)  

    --- 4 WORK AREA LINES (style=lined) ---

Let  `h:R rarr R, \ h(x)=-(1)/(4)(x+2)^(2)(x-2)^(2)+2`. Parts of the graph of `f` and `h` are shown below.
 

 
       
 

  1. Write a sequence of two transformations that map the graph of `f` onto the graph of `h`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     
       
     

  2.   i. State the values of `x` for which the graphs of `f`and `h` intersect.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3.  ii. Write down a definite integral that will give the total area of the shaded regions in the graph above.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. iii. Find the total area of the shaded regions in the graph above. Give your answer correct to two decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. Let `D` be the vertical distance between the graphs of `f`and`h`.
  6. Find all values of `x` for which `D` is at most 2 units. Give your answers correct to two decimal places.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `f(x)=(1)/(4)x^(4)-2x^(2)+4`
  3.  i. `f^{′}(x)=x(x-2)(x+2)=x^(3)-4x`
  4. ii. `-(16sqrt3)/(9)`
  5. `text{Reflect in the x-axis then translate 2 units up, or translate 2 units down then reflect in the x-axis.}`
  6.   i. `x in{-sqrt6,-sqrt2,sqrt2,sqrt6}`
  7.  ii. `2int_(sqrt2)^(sqrt6)(h(x)-f(x))\ dx” or “int_(-sqrt6)^(-sqrt2)(h(x)-f(x))\ dx+int_(sqrt2)^(sqrt6)(h(x)-f(x))\ dx`
  8. iii. `text(2.72 u²)`
  9. `-2.61 <= x <= -1.08,1.08 <= x <= 2.61`
Show Worked Solution

a.   `text(S)text(ince)\ f(x)\ text{passes through (0, 4):}`

`4` `=a(2)^2(-2)^2`  
`4` `=16a`  
`:.a` `=1/4\ \ text(… as required)`  

 

b.  `f(x)` `=(1)/(4)(x+2)^(2)(x-2)^(2)`  
  `=(1)/(4)x^4-2x^2+4`  

 
c.i. 
`f^{′}(x)=x(x-2)(x+2)=x^(3)-4x`
 

c.ii.  `text{Solve}\ \ f^{″}(x)=0\ \ \text{for}\ x:`

`3x^2-4=0`

`=> \ x=(2sqrt3)/(3)`

`f^{′}((2sqrt3)/(3))=-(16sqrt3)/(9)`
 

d.  `text{Reflect in the x-axis then translate 2 units up, or}`

`text{translate 2 units down then reflect in the x-axis.}`
 

e.i.  `text{By CAS, solve}\ \ f(x)=h(x)\ \ text{for}\ x:}`

`x in{-sqrt6,-sqrt2,sqrt2,sqrt6}`
 

e.ii.  `2int_(sqrt2)^(sqrt6)(h(x)-f(x))\ dx” or”`

`int_(-sqrt6)^(-sqrt2)(h(x)-f(x))\ dx+int_(sqrt2)^(sqrt6)(h(x)-f(x))\ dx`
 

e.iii.  `text(Area = 2.72 u²)`

♦♦ Mean mark part (f) 26%.

 

f.   `text{By CAS, solve}\ -2 <= h(x)-f(x) <= 2\ \ \text{for}\ x:`

`-2.61 <= x <= -1.08, \ 1.08 <= x <= 2.61,” or”`

`-sqrt(4+2sqrt2) <= x <= -sqrt(4-2sqrt2), \ sqrt(4-2sqrt2) <= x <= sqrt(4+2sqrt2)`

Filed Under: Area Under Curves, Curve Sketching Tagged With: Band 3, Band 4, Band 5, smc-723-70-Other, smc-723-80-Area between graphs, smc-724-10-Cubic

Calculus, MET2 2021 VCAA 2

Four rectangles of equal width are drawn and used to approximate the area under the parabola  `y = x^2`  from  `x = 0`  to  `x = 1`.

The heights of the rectangles are the values of the graph of  `y = x^2` at the right endpoint of each rectangle, as shown in the graph below.
 

  1. State the width of each of the rectangles shown above.  (1 mark)
  2. Find the total area of the four rectangles shown above.  (1 mark)
  3. Find the area between the graph of  `y = x^2`, the `x`-axis and the line  `x=1`.  (2 marks)
  4. The graph of `f` is shown below.
     
         

    Approximate  `int_(-2)^2 f(x)\ dx`  using four rectangles of equal width and the right endpoint of each rectangle.  (1 mark)

Parts of the graphs of  `y = x^2`  and  `y = sqrtx`  are shown below.
 
     

  1. Find the area of the shaded region.  (1 mark)
  2. The graph of  `y=x^2` is transformed to the graph of  `y = ax^2`, where  `a ∈ (0, 2]`.
  3. Find the values of `a` such that the area defined by region(s) bounded by the graphs of  `y = ax^2`  and  `y = sqrtx`  and the lines  `x = 0`  and  `x = a`  is equal to `1/3`. Give your answer correct to two decimal places.  (4 marks)
Show Answers Only
  1. `0.25`
  2. `15/32\ text(u)^2`
  3. `1/3\ text(u)^2`
  4. `-2`
  5. `1/3\ text(u)^2`
  6. `1.13`
Show Worked Solution

a.   `0.25`

 

b.    `text{Area}` `= 1/4 (1/16 + 1/4 + 9/16 + 1)`
    `= 15/32\ text(u)^2`

 

c.    `text{Area}` `= int_0^1 x^2 dx`
    `= 1/3\ text(u)^2`

 

d.

♦♦♦ Mean mark part (d) 16%.

`int_-2^2 f(x)\ dx` `≈ 6 + 2 – 4 – 6`
  `≈ -2`

 

e.   `text{Area}` `= int_0^1 (sqrtx – x^2) dx`
    `= 1/3\ text(u)^2`

 
f.   `text{Case 1:} \ a ≤ 1`

♦♦♦ Mean mark part (f) 18%.

`int_0^a (sqrtx – ax^2) dx = 1/3`

`a =  0.77 \ \ text{or} \ \ a = 1.00`
  

`text{Case 2:} \ a > 1`

`sqrtx = ax^2 \ => \ x = a^{- 3/2}`

`text{Solve for}\ a\ text{(by CAS)}:`

`int_0^{a^{- 3/2}} (sqrtx – ax^2) dx + int_{a^{- 3/2}}^a (sqrtx – ax^2) dx = 1/3`

`:. a = 1.13`

Filed Under: Area Under Curves (old) Tagged With: Band 3, Band 4, Band 6, smc-723-10-Quadratic, smc-723-70-Other, smc-723-80-Area between graphs, smc-723-90-Approximations

Calculus, MET2 2019 VCAA 12 MC

If  `int_1^4 f(x)\ dx = 4`  and  `int_2^4 f(x)\ dx = -2`, then  `int_1^2(f(x) + x)\ dx`  is equal to

A.   `2`

B.   `6`

C.   `8`

D.   `7/2`

E.   `15/2`

Show Answers Only

`E`

Show Worked Solution
`int_1^2 f(x) + x\ dx` `= int_1^2 x\ dx + int_1^2 f(x)\ dx`
  `= [(x^2)/2]_1^2 + int_1^4 f(x)\ dx – int_2^4 f(x)\ dx`
  `= (2 – 1/2) + 4 – (-2)`
  `= 15/2`

`=>   E`

Filed Under: Area Under Curves Tagged With: Band 5, smc-723-70-Other

Calculus, MET2 2017 VCAA 17 MC

The graph of a function  `f`, where  `f(−x) = f (x)`, is shown below.

The graph has `x`-intercepts at `(a, 0)`, `(b, 0)`, `(c, 0)` and `(d, 0)` only.

The area bound by the curve and the `x`-axis on the interval `[a, d]` is

  1. `int_a^d f(x)\ dx`
  2. `int_a^b f(x)\ dx - int_c^b f(x)\ dx + int_c^d f(x)\ dx`
  3. `2int_a^b f(x)\ dx + int_b^c f(x)\ dx`
  4. `2int_a^b f(x)\ dx - 2int_b^(b + c) f(x)\ dx`
  5. `int_a^b f(x)\ dx + int_c^b f(x)\ dx + int_d^c f(x)\ dx`
Show Answers Only

`D`

Show Worked Solution

`text(S)text(ince)\ \ f(x)\ \ text(is an odd function,)`

♦♦♦ Mean mark 21%.

`=> b=-c`

`:. 2int_a^b f(x)\ dx – 2int_b^(b + c) f(x)\ dx`

`= 2int_a^b f(x)\ dx – 2int_b^(0) f(x)\ dx`

`=> D`

Filed Under: Area Under Curves Tagged With: Band 6, smc-723-70-Other

Calculus, MET1 2017 VCAA 9

The graph of  `f: [0, 1] -> R,\ f(x) = sqrt x (1-x)`  is shown below.
 

  1. Calculate the area between the graph of `f` and the `x`-axis.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. For `x` in the interval `(0, 1)`, show that the gradient of the tangent to the graph of `f` is  `(1-3x)/(2 sqrt x)`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

The edges of the right-angled triangle `ABC` are the line segments `AC` and `BC`, which are tangent to the graph of `f`, and the line segment `AB`, which is part of the horizontal axis, as shown below.

Let `theta` be the angle that `AC` makes with the positive direction of the horizontal axis, where  `45^@ <= theta < 90^@`.

  1. Find the equation of the line through `B` and `C` in the form  `y = mx + c`, for  `theta = 45^@`.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of `C` when  `theta = 45^@`.   (4 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4/15\ text(units)^2`
  2. `text(Proof)\ \ text{(See Workes Solutions)}`
  3. `y = -x + 1`
  4. `C (11/27, 16/27)`
Show Worked Solution
a.   `text(Area)` `= int_0^1 (sqrt x-x sqrt x)\ dx`
    `= int_0^1 (x^(1/2)-x^(3/2))\ dx`
    `= [2/3 x^(3/2)-2/5 x^(5/2)]_0^1`
    `= (2/3-2/5)-(0-0)`
    `= 10/15-6/15`
    `= 4/15\ text(units)^2`

 

♦♦ Mean mark part (b) 35%.
MARKER’S COMMENT: Establishing the common denominator in the working was required!
b.   `f (x)` `= x^(1/2)-x^(3/2)`
  `f^{′}(x)` `= 1/2 x^(-1/2)-3/2 x^(1/2)`
    `= 1/(2 sqrt x)-(3 sqrt x)/2`
    `= (1-3x)/(2 sqrt x)\ \ text(.. as required.)`

 

c.  `m_(AC) = tan 45^@=1`

♦♦♦ Mean mark part (c) 20%.
MARKER’S COMMENT: Most successful answers introduced a pronumeral such as `a=sqrtx` to solve.

`=> m_(BC) = -1\ \ (m_text(BC) _|_ m_(AC))`

 

`text(At point of tangency of)\ BC,\  f^{prime}(x) = -1`

`(1-3x)/(2 sqrt x)` `=-1`
`1-3x` `=-2sqrtx`
`3x-2sqrt x-1` `=0`

 

`text(Let)\ \ a=sqrtx,`

`3a^2-2a-1` `=0`
`(3a+1)(a-1)` `=0`
`a=1 or -1/3`   
`:. sqrt x` `=1` `or`   `sqrt x=- 1/3\ \ text{(no solution)}`
`x` `=1`    

 
`f(1)=sqrt1(1-1)=0\ \ =>B(1,0)`
 

`:.\ text(Equation of)\ \ BC, \ m=-1, text{through (1,0) is:}`

`y-0` `=-1(x-1)`
`y` `=-x+1`

 

d.  `text(Find Equation)\ AC:`

♦♦♦ Mean mark part (d) 17%.

`m_(AC) =1`

`text(At point of tangency of)\ AC,\  f^{prime}(x) = 1`

`(1-3x)/(2 sqrt x)` `=1`
`1-3x` `=2sqrtx`
`3x+2sqrt x-1` `=0`
`(3 sqrtx-1)(sqrtx+1)` `=0`
   
`:. sqrt x` `=1/3` `or`   `sqrt x=-1\ \ text{(no solution)}`
`x` `=1/9`    

 
`f(1/9)=sqrt(1/9)(1-1/9)=1/3 xx 8/9 = 8/27\ \ =>P(1/9,8/27)`
 

`:.\ text(Equation of)\ AC, m=1, text(through)\ \ P\ \ text(is):`

`y-8/27` `= 1 (x-1/9)`
`y` `= x + 5/27`

 
`C\ text(is at intersection of)\ AC and CB:`

`-x + 1` `= x + 5/27`
`2x` `= 22/27`
`:. x` `= 11/27`
`y` `= -11/27 + 1 = 16/27`

 
`:. C (11/27, 16/27)`

Filed Under: Area Under Curves, Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-40-Other Function, smc-634-80-Angle between tangents/axes, smc-723-30-Square root, smc-723-70-Other

Copyright © 2014–2025 SmarterEd.com.au · Log in