Let \(f(x)=e^{x-1}\).
Given that the product function \(f(x)\times g(x)=e^{(x-1)^2}\), the rule for the function \(g\) is
- \(g(x)=e^{x-1}\)
- \(g(x)=e^{(x-2)(x-1)}\)
- \(g(x)=e^{(x+2)(x-1)}\)
- \(g(x)=e^{x(x-2)}\)
- \(g(x)=e^{x(x-3)}\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let \(f(x)=e^{x-1}\).
Given that the product function \(f(x)\times g(x)=e^{(x-1)^2}\), the rule for the function \(g\) is
\(B\)
\(f(x)\times g(x)\) | \(=e^{(x-1)^2}\) |
\(e^{x-1}\times g(x)\) | \(=e^{(x-1)^2}\) |
\( g(x)\) | \(=\dfrac{e^{(x-1)^2}}{e^{(x-1)}}\) |
\(=e^{(x-1)^2}\times e^{(x-1)^-1}\) | |
\(=e^{x^2-3x+2}\) | |
\(=e^{(x-2)(x-1)}\) |
\(\Rightarrow B\)
Solve `10^{3 x-13}=100` for `x`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`x=5`
`10^{(3 x-13)}` | `=10^2` | |
`3x – 13` | `= 2` | |
`x` | `=5` |
Solve \(e^{2x}-12=4e^{x}\) for \(x\ \in\ R\). (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(x=\log_{e}6\)
\(e^{2x}-12\) | \(=4e^{x}\) |
\(e^{2x}-4e^{x}-12\) | \(=0\) |
\(\text{Let}\ \ u=e^{x}:\)
\(u^2-4u-12\) | \(=0\) |
\((u-6)(u+2)\) | \(=0\) |
\(\Rightarrow u=6\ \ \ \text{or}\ -2\)
\(\therefore e^{x}\) | \(=6\ \ \ \ \ \ \ \ \ \ \text{or}\ \ \ \ \ \ e^{x}=-2\ \text{(no solution)}\) | |
\(x\) | \(=\log_{e}6 \) |
Solve `3e^t = 5 + 8e^(−t)` for `t`. (3 marks)
`log_e(8/3)`
`3e^t – 5 – 8e^(−t) = 0`
`text(Multiply both sides by)\ e^t:`
`3e^(2t) – 5e^t – 8 = 0`
`text(Let)\ \ y = e^t`
`log_2((6 – x)/(4 – x))` | `= 2` | ||
`3y^2 – 5y – 8` | `= 0` | ||
`(3y – 8)(y + 1)` | `= 0` | ||
`y` | `=8/3\ quadquadquadquadquad text(or)\ \ \ \ ` | `y` | `=-1\ \ text{(No solution)}` |
`e^t` | `= 8/3` | ||
`:. t` | `= log_e(8/3)\ \ \ ` |
Solve the equation `3^(– 4x) = 9^(6 - x)` for `x`. (2 marks)
`- 6`
`3^(-4x)` | `= (3^2)^(6 – x)` | |
`3^(-4x)` | `=3^(12-2x)` | |
` -4x` | `= 12 – 2x` | |
`2x` | `= -12` | |
`:. x` | `= -6` |
If `y = a^(b - 4x) + 2`, where `a > 0`, then `x` is equal to
`A`
`text(Solving for)\ x:`
`y – 2` | `= a^(b – 4x)` |
`b – 4x` | `= log_a(y – 2)` |
`4x` | `= b – log_a(y – 2)` |
`:. x` | `= 1/4(b – log_a(y – 2))` |
`=> A`
Let `f: R -> R,\ f(x) = e^x + e^(–x).`
For all `u in R,\ f(2u)` is equal to
`C`
`text(Solution 1)`
`text(Define)\ \ f(x) = e^x + e^-x`
`text(Enter each functional equation)`
`[text(i.e.)\ \ f(2u) = (f(u))^2 – 2]`
`text(until CAS output is “true”)`
`=> C`
`text(Solution 2)`
`f(2u)` | `=e^(2u) + e^(-2u)` |
`(f(u))^2` | `=(e^u + e^(-u))^2` |
`=e^(2u) + 2 + e^(-2u)` | |
`:. f(2u) = (f(u))^2-2`
`=>C`
Solve the following equation for `x`:
`2e^(2x) - e^x = 0`. (2 marks)
`x = ln\ 1/2`
`text(Solution 1)`
`2e^(2x) – e^x = 0`
`text(Let)\ \ X = e^x`
`2X^2 – X` | `= 0` |
`X (2X – 1)` | `= 0` |
`X = 0 or 1/2`
`text(When)\ \ e^x = 0\ =>\ text(no solution)`
`text(When)\ \ e^x = 1/2`
`ln e^x` | `= ln\ 1/2` |
`:. x` | `= ln\ 1/2` |
`text(Solution 2)`
`2e^(2x)-e^x` | `=0` |
`2e^(2x)` | `=e^x` |
`ln 2e^(2x)` | `=ln e^x` |
`ln 2 +ln e^(2x)` | `=x` |
`ln 2 + 2x` | `=x` |
`x` | `=-ln2` |
`=ln\ 1/2` |
Solve the equation `4^x - 15 × 2^x = 16` for `x.` (3 marks)
`x = 4`
`4^x – 15 xx 2^x – 16` | `= 0` |
`2^(2x) – 15 xx 2^x – 16` | `= 0` |
`text(Let)\ \ y = 2^x`
`y^2 – 15y – 16` | `= 0` |
`(y – 16) (y + 1)` | `= 0` |
`y` | `= 16` | `\ \ \ or\ \ \ ` | `y` | `= – 1` |
`2^x` | `= 16` | `2^x` | `= – 1` | |
`:. x` | `= 4` | `text(No solution)` |
Solve the equation `2^(2x + 1) = 32` for `x`. (2 marks)
`2`
`2^(2x + 1)` | `= 32` |
`2^(2x + 1)` | `= 2^5` |
`2x + 1` | `= 5` |
`:. x` | `= 2` |
Solve `5^x = 4` for `x`. (2 marks)
`(log_e 4)/(log_e 5)`
`text(Given)\ \ 5^x` | `= 4` | |
`log_e 5^x` | `= log_e 4` | |
`x xx log_e 5` | `= log_e 4` | |
`:. x` | `= (log_e 4)/(log_e 5)` |
Solve the equation `2^(3x - 3) = 8^(2 - x)` for `x`. (2 marks)
`3/2`
`2^(3x – 3)` | `= 2^(3(2 – x))` |
`3x – 3` | `= 6 – 3x` |
`6x` | `= 9` |
`:. x` | `= 3/2` |