Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find and simplify the rule of `f^{\prime}(x)`, where `f:R \rightarrow R, f(x)=\frac{\cos (x)}{e^x}`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{-(\sin x+\cos x)}{e^x}`
Using the quotient rule
`f(x)` | `=\frac{\cos (x)}{e^x}` | |
`f^{\prime}(x)` | `=\frac{-e^x \sin x-e^x \cos x}{e^{2 x}}` | |
`= \frac{-e^x(\sin x+\cos x)}{e^{2 x}}` | ||
`=\frac{-(\sin x+\cos x)}{e^x}` |
Differentiate with respect to `x`:
Let `y=sin x/(x + 1)`. Find `dy/dx `. (2 marks)
`dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
`y = sinx/(x + 1)`
`d/dx (u/v) = (u^{\prime} v – uv^{\prime})/v^2`
`u` | `= sin x` | `v` | `= x + 1` |
`u^{\prime}` | `= cos x` | `\ \ \ v^{\prime}` | `= 1` |
`:.dy/dx = {cos x (x + 1) – sin x} / (x + 1)^2`
Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g prime(1)`. (2 marks)
`-pi/2`
`u = sin(pi x)` | `v = x + 1` | |
`u prime = pi cos(pi x)` | `v prime = 1` |
`g prime(x)` | `= (v u prime – u v prime)/v^2` |
`= ((x + 1) ⋅ pi cos(pi x) – sin (pi x))/(x + 1)^2` | |
`g prime(1)` | `= (2 pi cos(pi) – sin(pi))/2^2` |
`= (2 pi(-1) – 0)/4` | |
`= -pi/2` |
Let `f(x) = (e^x)/(cos(x))`.
Evaluate `f′(pi)`. (2 marks)
`text(See Worked Solutions)`
`f′(x) = (e^x)/(cos(x))`
`u` | `= e^x` | `v` | `= cos(x)` |
`u′` | `= e^x` | `v′` | `= −sin(x)` |
`f′(x)` | `= (u′v – uv′)/(v^2)` |
`= (e^x · cos(x) + e^x sin(x))/(cos^2(x))` |
`f′(pi)` | `= (e^pi · cospi + e^pi sinpi)/(cos^2 pi)` |
`= (e^pi(−1) + e^pi · 0)/((−1)^2)` | |
`= −e^pi` |
If `f(x) = x/(sin(x))`, find `f prime (pi/2).` (2 marks)
`1`
`text(Using Quotient Rule:)`
`(h/g)′` | `= (h′ g – h g′)/g^2` |
`f prime (x)` | `= (1 xx sin (x) – x cos (x))/(sin x)^2` |
`:. f prime (pi/2)` | `= (sin (pi/2) – pi/2 xx cos (pi/2))/(sin(pi/2))^2` |
`= (1 – 0)/1^2` | |
`= 1` |
For `f(x) = (cos(x))/(2x + 2)` find `f prime (pi).` (3 marks)
`1/(2 (pi + 1)^2)`
`text(Using Quotient Rule:)`
`(g/h)′` | `= (g′ h – gh′)/h^2` |
`f prime (x)` | `= (-sin (x) (2x + 2) – 2 cos (x))/(2x + 2)^2` |
`:. f prime (pi)` | `= (-sin (pi) (2pi + 2) – 2 cos (pi))/(2pi + 2)^2` |
`= (0 – 2 (-1))/[2 (pi + 1)]^2` | |
`= 2/(4(pi + 1)^2)` | |
`= 1/(2 (pi + 1)^2)` |
Let `y = (cos(x))/(x^2 + 2)`.
Find `(dy)/(dx)`. (2 marks)
`(−x^2sin(x) – 2sin(x) – 2xcos(x))/((x^2 + 2)^2)`
`text(Using Quotient Rule:)`
`(h/g)′` | `= (h′g – hg′)/(g^2)` |
`(dy)/(dx)` | `= (−sin(x)(x^2 + 2) – cos(x)(2x))/((x^2 + 2)^2)` |
`= (−x^2sin(x) – 2sin(x) – 2xcos(x))/((x^2 + 2)^2)` |
Let `f(x) = (x^3)/(sin(x))`. Find `f′(x)`. (2 marks)
`(3x^2sin(x) – x^3cos(x))/(sin^2(x))`
`f(x) = (x^3)/(sin(x))`
`text(Using Quotient Rule:)`
`d/(dx)(u/v) = (vu′ – uv′)/(v^2)`
`:. f′(x) = (3x^2sin(x) – x^3cos(x))/(sin^2(x))`