Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g^{prime}(1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g^{prime}(1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`-pi/2`
`u = sin(pi x)` | `v = x + 1` | |
`u^{prime}=pi cos(pi x)` | `v^{prime}=1` |
`g^{prime}(x)` | `=(vu^{prime}-uv^{prime})/v^2` |
`= ((x + 1) ⋅ pi cos(pi x)-sin (pi x))/(x + 1)^2` | |
`g^{prime}(1)` | `= (2 pi cos(pi)-sin(pi))/2^2` |
`= (2 pi(-1)-0)/4` | |
`= -pi/2` |
Let `f(x)=(1 + tan x)^10.` Find `f^{\prime}(x)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`10 sec^2 x \ (1 + tan x)^9`
`f(x) = (1 + tan x)^10`
`f^{\prime}(x)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
If `f(x)= 2 sin 3x - 3 tan x`, find `f^{prime}(0)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`3`
`y` | `= 2 sin 3x-3 tan x` |
`(dy)/(dx)` | `= 6 cos 3x-3 sec^2 x` |
`text(When)\ \ x = 0,`
`(dy)/(dx)` | `= 6 cos 0-3 sec^2 0` |
`= 6 (1)-3/(cos^2 0)` | |
`= 6-3` | |
`= 3` |