SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2022 VCAA 5

Consider the composite function `g(x)=f(\sin (2 x))`, where the function `f(x)` is an unknown but differentiable function for all values of `x`.

Use the following table of values for `f` and `f^{\prime}`.

`\quad x \quad` `\quad\quad 1/2\quad\quad` `\quad\quad(sqrt{2})/2\quad\quad` `\quad\quad(sqrt{3})/2\quad\quad`
`f(x)` `-2` `5` `3`
`\quad\quad f^{prime}(x)\quad\quad` `7` `0` `1/9`

 

  1. Find the value of `g\left(\frac{\pi}{6}\right)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

The derivative of `g` with respect to `x` is given by `g^{\prime}(x)=2 \cdot \cos (2 x) \cdot f^{\prime}(\sin (2 x))`.

  1. Show that `g^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{9}`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the equation of the tangent to `g` at `x=\frac{\pi}{6}`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the average value of the derivative function `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Find four solutions to the equation `g^{\prime}(x)=0` for the interval `x \in[0, \pi]`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    `3`

b.    `1/9`

c.    `y=1/9x+3-pi/54`

d.    `-48/pi`

e.    ` x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`

Show Worked Solution
 

a.  `g(pi/6)`
`= f(sin(pi/3))`  
  `= f(sqrt3/2)`  
  `= 3`  

 

b.  `g\ ^{prime}(x)` `= 2\cdot\ cos(pi/3)\cdot\ f\ ^{prime}(sin(pi/3))`  
`g\ ^{prime}(pi/6)` `= 2 xx 1/2 xx f\ ^{prime}(sqrt3/2)`  
  `= 1/9`  

 

c.   `m = 1/9`  and  `g(pi/6) = 3`

`y  –  y_1` `= m(x-x_1)`  
`y  –  3` `= 1/9(x-pi/6)`  
`y` `= 1/9x + 3-pi/54`  

♦♦ Mean mark (c) 45%.
MARKER’S COMMENT: Some students did not produce an equation as required.

  
d.   The average value of `g^{\prime}(x)` between `x=\frac{\pi}{8}` and `x=\frac{\pi}{6}`

Average `= \frac{1}{\frac{\pi}{6}-\frac{\pi}{8}}\cdot\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} g^{\prime}(x) d x`  
  `=24/pi \cdot[g(x)]_{\frac{\pi}{8}}^{\frac{\pi}{\6}}`  
  `= 24/pi \cdot(f(sqrt3/2)-f(sqrt2/2))`  
  `= 24/pi (3-5) = -48/pi`  

♦♦ Mean mark (d) 30%.
MARKER’S COMMENT: Those who used the Average Value formula were generally successful.
Some students substituted `g^{\prime}(x)`, not `g(x)`.

e.   `2 \cos (2 x) f^{\prime}(\sin (2 x)) = 0`

`:.\   2 \cos (2 x) = 0\ ….(1)`  or  ` f^{\prime}(\sin (2 x)) = 0\ ….(2)`

(1):   ` 2 \cos (2 x)`  `= 0`      `x \in[0, \pi]`
`\cos (2 x)` `= 0`      `2 x \in[0,2 \pi]`
`2x` `= pi/2 , (3pi)/2`  
`x` `= pi/4 , (3pi)/4`  
     
(2): ` f^{\prime}(\sin (2 x)) ` `= sqrt2/2`  
`2x` `= pi/4 , (3pi)/4`  
`x` `= pi/8 , (3pi)/8`  

  
`:. \  x = pi/8 , pi/4 , (3pi)/8 ,(3pi)/4`


♦♦ Mean mark (e) 30%.
MARKER’S COMMENT: Some students were able to find `pi/4, (3pi)/4`. Some solved `2 cos(2x)=0` or `f^{\prime}(sin(2x))=0` but not both.

Filed Under: Differentiation (Trig), Integration (Trig), Trig Differentiation, Trig Equations, Trig Integration Tagged With: Band 4, Band 5, Band 6, smc-725-10-Sin, smc-725-20-Cos, smc-736-10-sin, smc-736-20-cos, smc-737-10-sin, smc-737-20-cos, smc-737-50-Average Value, smc-737-60-Find f(x) given f'(x), smc-744-10-sin, smc-744-20-cos, smc-747-10-sin, smc-747-20-cos, smc-747-60-Average Value

Calculus, MET2 2022 VCAA 11 MC

If `\frac{d}{d x}(x \cdot \sin(x))=\sin (x)+x \cdot \cos(x)`, then `\frac{1}{k} \int x \ cos(x)dx` is equal to

  1. `k\left(x \cdot \sin (x)-\int \sin (x) d x\right)+c`
  2. `\frac{1}{k} x \cdot \sin (x)-\int \sin (x) d x+c`
  3. `\frac{1}{k}\left(x \cdot \sin (x)-\int \sin (x) d x\right)+c`
  4. `\frac{1}{k}(x \cdot \sin (x)-\sin (x))+c`
  5. `\frac{1}{k}\left(\int x \cdot \sin (x) d x-\int \sin (x) d x\right)+c`
Show Answers Only

`C`

Show Worked Solution

Given `\frac{d}{d x}(x \cdot \sin(x))=\sin (x)+x \cdot \cos(x)`, then

`x\cdot \cos (x)` `=\frac{d}{d x}(x\cdot \sin (x))-\sin (x)`  
`\frac{1}{k} \int x \cos (x) d x` `= \frac{1}{k}\left(\int \frac{d}{d x}(x \cdot \sin (x)) d x-\int \sin (x) d x\right)`  
  `= \frac{1}{k}\left(x \cdot \sin (x)-\int \sin (x)d x\right)+c`  

 
`=> C`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-20-cos, smc-737-40-Integration by recognition, smc-747-20-cos, smc-747-50-Integration by recognition

Calculus, MET1 2023 VCAA 5

  1. Evaluate  \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find all values of \(k\) such that \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx=\displaystyle \int_{0}^{\frac{\pi}{2}} \cos(x)\,dx\), where \(-3\pi<k<2\pi\).   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(\dfrac{1}{2}\)

b.    \(k=\dfrac{-11\pi}{6},\ \dfrac{-7\pi}{6},\ \dfrac{\pi}{6},\ \dfrac{5\pi}{6}\)

Show Worked Solution
a.    \(\displaystyle \int_{0}^{\frac{\pi}{3}} \sin(x)\,dx\) \(=\left[-\cos x\right]_0^\frac{\pi}{3}\)
    \(=-\cos\dfrac{\pi}{3}+\cos 0\)
    \(=-\dfrac{1}{2}+1\)
    \(=\dfrac{1}{2}\)

 

b.    \(\displaystyle \int_{k}^{\frac{\pi}{2}} \cos(x)\,dx\) \(=\left[\sin x\right]_k^\frac{\pi}{2}\)
    \(=\sin\bigg(\dfrac{\pi}{2}\bigg)-\sin (k)\)
    \(=1-\sin (k)\)

 
\(\text{Using part (a):}\)

\(1-\sin (k)\) \(=\dfrac{1}{2}\)
\(\sin (k)\) \(=\dfrac{1}{2}\)
\(\therefore\ k\) \(=\dfrac{-11\pi}{6},\ \dfrac{-7\pi}{6},\ \dfrac{\pi}{6},\ \dfrac{5\pi}{6}\)

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-10-sin, smc-737-20-cos, smc-747-10-sin, smc-747-20-cos

Calculus, MET2 2019 VCAA 4 MC

`int_0^(pi/6) (a sin (x) + b cos(x))\ dx`  is equal to

  1. `((2 - sqrt 3)a - b)/2`
  2. `(b - (2 - sqrt 3) a)/2`
  3. `((2 - sqrt 3)a + b)/2`
  4. `((2 - sqrt 3) b - a)/2`
  5. `((2 - sqrt 3) b + a)/2`
Show Answers Only

`C`

Show Worked Solution

`int_0^(pi/6) (a sin (x) + b cos(x))\ dx`

`= [-a cos(x) + b sin(x)]_0^(pi/6)`

`= [-a ⋅ sqrt 3/2 + b/2 – (-a + 0)]`

`= (2a – sqrt 3 a + b)/2`

`= ((2 – sqrt 3) a + b)/2`

`=>   C`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-10-sin, smc-737-20-cos, smc-747-10-sin, smc-747-20-cos

Calculus, MET1 SM-Bank 5

The function with rule  `f(x)`  has derivative  `f^{prime}(x) =  cos\ 3x`.

If  `f(pi/6) = 1,`  find  `f(x).`  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`f(x)= 1/3 sin\ 3x + 2/3`

Show Worked Solution
`int f(x)\ dx` `=int cos\ 3x\ dx`
  `= 1/3 sin\ 3x + c`
`f(pi/6)`  `= 1/3\ [sin\ (3 xx pi/6) ]+ c`
`1`  `= 1/3\ sin\ pi/2+c`
`c`  `= 2/3`

 
`:.f(x)= 1/3 sin\ 3x + 2/3`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-20-cos, smc-737-60-Find f(x) given f'(x), smc-747-20-cos, smc-747-70-Find f(x) given f'(x)

Calculus, MET1 SM-Bank 25

Evaluate  `int_0^(pi/4) cos 2x\ dx`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`1/2`

Show Worked Solution

`int_0^(pi/4) cos 2x`

`= [1/2 sin\ 2x]_0^(pi/4)`

`= [1/2 sin\ pi/2-1/2 sin\ 0]`

`= 1/2-0`

`= 1/2`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-20-cos, smc-747-20-cos

Calculus, MET1 2007 HSC 2bi

Find  an anti-derivative of  `(1 + cos 3x)`  with respect to `x`.   (2 marks)

--- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

`x + 1/3 sin 3x + c`

Show Worked Solution

`int (1 + cos 3x)\ dx`

`= x + 1/3 sin 3x + c`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 3, smc-737-20-cos, smc-747-20-cos

Calculus, MET1 2010 VCAA 2

Find an antiderivative of  `cos (2x + 1)`  with respect to `x.`   (1 mark)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`1/2 sin (2x + 1)`

Show Worked Solution

`int cos (2x + 1)\ dx`

`= 1/2 sin (2x + 1)`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 3, smc-737-20-cos, smc-747-20-cos

Calculus, MET1 2014 VCAA 7

If  `f^{prime}(x) = 2cos(x)-sin(2x)`  and  `f(pi/2) = 1/2`,  find  `f(x)`.   (3 marks)

--- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

`2sinx + 1/2cos(2x)-1`

Show Worked Solution
`f(x)` `= int(2cosx-sin2x)dx`
  `= 2sinx + 1/2cos(2x) + c`

  
`text(Substitute)\ \ f(pi/2) = 1/2:`

`1/2` `= 2sin(pi/2) + 1/2cos(pi) + c`
`1/2` `= 2-1/2 + c`
`c` `=-1`
`:. f(x)` `= 2sinx + 1/2cos(2x)-1`

Filed Under: Integration (Trig), Trig Integration Tagged With: Band 4, smc-737-10-sin, smc-737-20-cos, smc-737-60-Find f(x) given f'(x), smc-747-10-sin, smc-747-20-cos, smc-747-70-Find f(x) given f'(x)

Calculus, MET2 2012 VCAA 7 MC

The temperature, `T^@C`, inside a building `t` hours after midnight is given by the function

`f: [0, 24] -> R,\ T(t) = 22 - 10\ cos (pi/12 (t - 2))`

The average temperature inside the building between 2 am and 2 pm is

  1. `10°text(C)`
  2. `12°text(C)`
  3. `20°text(C)`
  4. `22°text(C)`
  5. `32°text(C)`
Show Answers Only

`D`

Show Worked Solution

`text(Period) = (2pi)/n = (2pi)/(pi/12) = 24`

`text(At 2 am,)\ \ t=2,`

`T(2) = 22 – 10\ cos (0) = 12`

`text(At 2 pm,)\ \ t=14,`

`T(14) = 22 – 10\ cos (pi) = 32`

 

`text(Symmetry of graph means the average)`

`text(temperature occurs at)\ \ t=8:`

`T(8) = 22 – 10\ cos ((pi)/2) = 22`

`=>   D`

Filed Under: Average Value and Other, Integration (Trig), Trig Equations, Trig Integration Tagged With: Band 4, smc-725-20-Cos, smc-737-20-cos, smc-737-50-Average Value, smc-747-60-Average Value, smc-756-20-Trig

Copyright © 2014–2025 SmarterEd.com.au · Log in