Consider the functions \(f\) and \(g\), where \begin{aligned} --- 2 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=lined) ---
& f: R \rightarrow R, f(x)=x^2-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}
Graphs, MET2 2022 VCAA 4 MC
Which one of the following functions is not continuous over the interval `x \in[0,5]`?
- `f(x)=\frac{1}{(x+3)^2}`
- `f(x)=\sqrt{x+3}`
- `f(x)=x^{\frac{1}{3}}`
- `f(x)=\tan \left(\frac{x}{3}\right)`
- `f(x)=\sin ^2\left(\frac{x}{3}\right)`
Graphs, MET2 2020 VCAA 18 MC
Let `a \in(0, \infty)` and `b \in R`.
Consider the function `h:[-a, 0) \cup(0, a] \rightarrow R, h(x)=\frac{a}{x}+b`.
The range of `h` is
- `[b-1,b+1]`
- `(b-1,b+1)`
- `(-oo,b-1)uu(b+1,oo)`
- `(-oo,b-1]uu[b+1,oo)`
- `[b-1,oo)`
Algebra, MET2 2018 VCAA 3 MC
Consider the function `f: [a, b) -> R,\ f(x) = 1/x`, where `a` and `b` are positive real numbers.
The range of `f` is
- `[1/a, 1/b)`
- `(1/a, 1/b]`
- `[1/b, 1/a)`
- `(1/b, 1/a]`
- `[a, b)`
Graphs, MET2 2018 VCAA 2 MC
The maximal domain of the function `f` is `R text(\{1})`.
A possible rule for `f` is
- `f(x) = (x^2 - 5)/(x - 1)`
- `f(x) = (x + 4)/(x - 5)`
- `f(x) = (x^2 + x + 4)/(x^2 + 1)`
- `f(x) = (5 - x^2)/(1 + x)`
- `f(x) = sqrt (x - 1)`
Graphs, MET2 2008 VCAA 8 MC
The graph of the function `f: D -> R,\ f(x) = (x - 3)/(2 - x),` where `D` is the maximal domain has asymptotes
- `x = 3,\ \ \ \ \ \ \ \ \ \ y = 2`
- `x = -2,\ \ \ \ \ y = 1`
- `x = 1,\ \ \ \ \ \ \ \ \ \ y = -1`
- `x = 2,\ \ \ \ \ \ \ \ \ \ y = -1`
- `x = 2,\ \ \ \ \ \ \ \ \ \ y = 1`