SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET1 EQ-Bank 2

Consider the functions \(f\) and \(g\), where

\begin{aligned}
& f: R \rightarrow R, f(x)=x^2-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}

  1. State the range of \(f\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Determine the rule for the equation and state the domain of the function \(f \circ g\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Let \(h\) be the function \(h: D \rightarrow R, h(x)=x^2-9\).
  4. Determine the maximal domain, \(D\), such that \(g \circ h\) exists.  (1 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \([-9, \infty)\)

b.    \(f\circ g(x)=x-9, \text{Domain}\ [0, \infty)\)

c.    \((-\infty, -3)\cap (3, \infty)\)

Show Worked Solution

a.    \(\text{Range}\ \rightarrow\  [-9, \infty)\)

b.     \(f\circ g(x)\) \(=(g(x))^2-9\)
    \(=(\sqrt{x})^2-9\)
    \(=x-9\)

\(g(x)=\sqrt{x} \ \rightarrow x\ \text{must be }\geq 0\)

\(\therefore\ \text{Domain}\ f\circ g(x) \text{ is }[0, \infty)\)

c.     \(g\circ h(x)\) \(=\sqrt{h(x)}\)
    \(=\sqrt{x^2-9}\)

\(\text{For }g\circ h(x)\ \text{to exist}\ h(x)\geq 0\)

\(x\text{-intercepts for }h(x)\ \text{are } x=-3, 3\)

\(\text{and }h(x)\ \text{is positive for } x\leq -3\ \text{and }x\geq 3\)

\(\therefore\ \text{Maximal domain} = (-\infty, -3)\cap (3, \infty)\)

Filed Under: Functional Equations, Quotient and Other Graphs Tagged With: Band 3, Band 4, smc-642-10-(f o g)(x), smc-642-40-Other functions, smc-757-40-Domain/Range

Graphs, MET2 2022 VCAA 4 MC

Which one of the following functions is not continuous over the interval `x \in[0,5]`?

  1. `f(x)=\frac{1}{(x+3)^2}`
  2. `f(x)=\sqrt{x+3}`
  3. `f(x)=x^{\frac{1}{3}}`
  4. `f(x)=\tan \left(\frac{x}{3}\right)`
  5. `f(x)=\sin ^2\left(\frac{x}{3}\right)`
Show Answers Only

`D`

Show Worked Solution

From graph `f(x)=\tan \left(\frac{x}{3}\right)` is not continuous for `x \in[0,5]`

Alternatively `f(x)=\tan \left(\frac{x}{3}\right)` is discontinuous when `x/3 = pi/2`

i.e. when `x = (3pi)/2 ~~ 4.71… <5`

 

`=>D`

Filed Under: Quotient and Other Graphs Tagged With: Band 4, smc-757-40-Domain/Range

Graphs, MET2 2020 VCAA 18 MC

Let `a \in(0, \infty)` and `b \in R`.

Consider the function  `h:[-a, 0) \cup(0, a] \rightarrow R, h(x)=\frac{a}{x}+b`.

The range of  `h`  is

  1. `[b-1,b+1]`
  2. `(b-1,b+1)`
  3. `(-oo,b-1)uu(b+1,oo)`
  4. `(-oo,b-1]uu[b+1,oo)`
  5. `[b-1,oo)`
Show Answers Only

`D`

Show Worked Solution

`h(x)=(a)/(x)+b`

♦ Mean mark 43%.
MARKER’S COMMENT: Use  `y=2/x-3`  to illustrate an example of endpoints etc..

`text(Graph will be in the shape of a hyperbola)`

`text(Endpoint coordinates:)`

`(-a,-1+b) and (a, 1+b)`

`:.\ “Range”=(-oo,-1+b]uu[b+1,oo)`

`=>D`

Filed Under: Quotient and Other Graphs Tagged With: Band 5, smc-757-10-Quotient function, smc-757-40-Domain/Range

Algebra, MET2 2018 VCAA 3 MC

Consider the function  `f: [a, b) -> R,\ f(x) = 1/x`, where `a` and `b` are positive real numbers.

The range of  `f` is

  1. `[1/a, 1/b)`
  2. `(1/a, 1/b]`
  3. `[1/b, 1/a)`
  4. `(1/b, 1/a]`
  5. `[a, b)`
Show Answers Only

`D`

Show Worked Solution

`f: [a, b) -> R,\ f(x) = 1/x`

♦ Mean mark 48%.

`f(a) = 1/a,\ f(b) = 1/b`
 

`text(S) text(ince)\ a < b,`

`=>\ f(a) > f(b)`

`:.\ text(Range)\ \ f: (1/b, 1/a]`

`=>   D`

Filed Under: Quotient and Other Graphs Tagged With: Band 5, smc-757-10-Quotient function, smc-757-40-Domain/Range

Graphs, MET2 2018 VCAA 2 MC

The maximal domain of the function  `f`  is  `R text(\{1})`.

A possible rule for  `f` is

  1. `f(x) = (x^2 - 5)/(x - 1)`
  2. `f(x) = (x + 4)/(x - 5)`
  3. `f(x) = (x^2 + x + 4)/(x^2 + 1)`
  4. `f(x) = (5 - x^2)/(1 + x)`
  5. `f(x) = sqrt (x - 1)`
Show Answers Only

`A`

Show Worked Solution

`text(Maximal domain of)\ \ f -> R text(\{1})`

`->\ text(all real)\ x,\ x != 1`

`:. f(x) = (x^2 – 5)/(x – 1)`

`=>   A`

Filed Under: Quotient and Other Graphs Tagged With: Band 3, smc-757-10-Quotient function, smc-757-40-Domain/Range

Graphs, MET2 2008 VCAA 8 MC

The graph of the function  `f: D -> R,\ f(x) = (x - 3)/(2 - x),` where `D` is the maximal domain has asymptotes

  1. `x = 3,\ \ \ \ \ \ \ \ \ \ y = 2`
  2. `x = -2,\ \ \ \ \ y = 1`
  3. `x = 1,\ \ \ \ \ \ \ \ \ \ y = -1`
  4. `x = 2,\ \ \ \ \ \ \ \ \ \ y = -1`
  5. `x = 2,\ \ \ \ \ \ \ \ \ \ y = 1`
Show Answers Only

`D`

Show Worked Solution

`text(Use proper fraction tool on CAS:)`

`[text(CAS: propFrac) ((x – 3)/(2 – x))]`

`f(x) = -1 – 1/(x – 2)`

`:.\ text(Asymptotes:)\ \ x = 2, y = – 1`

`=>   D`

Filed Under: Quotient and Other Graphs Tagged With: Band 3, smc-757-10-Quotient function, smc-757-40-Domain/Range

Copyright © 2014–2025 SmarterEd.com.au · Log in