SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Measurement, STD2 M6 2025 HSC 35

The triangle \(PTA\) is shown. The length of \(PA\) is 75 m and the length of \(PT\) is 51 m.

The angle of depression from \(T\) to \(A\) is 36°, and the angle \(PTA\) is obtuse.
 

Find the length of \(TA\). Give your answer correct to 2 decimal places.   (3 marks)

--- 10 WORK AREA LINES (style=lined) ---

Show Answers Only

\(TA=35.03 \ \text{m}\)

Show Worked Solution

\(\angle TAP=36^{\circ} \ \text {(alternate)}\)

\(\text{Using sine rule in} \ \triangle TAP:\)

\(\dfrac{\sin \angle PTA}{75}\) \(=\dfrac{\sin 36^{\circ}}{51}\)
\(\sin \angle PTA\) \(=75 \times \dfrac{\sin 36^{\circ}}{54}=0.864 \ldots\)
\(\angle PTA\) \(=\sin ^{-1}(0.864 \ldots)=180-59.81=120.19^{\circ}\ \ \text{(obtuse)}\)

 
\(\angle PTX=120.19-54=66.19^{\circ}\)

\(\angle TPA=90-66.19=23.81^{\circ}\ \left(180^{\circ}\ \text{in}\ \triangle \right)\)
 

\(\text{Using sine rule in} \ \triangle TAP:\)

\(\dfrac{TA}{\sin 23.81^{\circ}}\) \(=\dfrac{51}{\sin 36^{\circ}}\)
\(TA\) \(=\dfrac{51 \times \sin 23.81^{\circ}}{\sin 36^{\circ}}\)
  \(=35.03 \ \text{m (2 d.p.)}\)

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 6, smc-804-20-Sine Rule, smc-804-50-Obtuse

Measurement, STD2 M6 2024 HSC 36

The diagram shows two vertical flagpoles, \(BE\) and \(CD\), set on sloping ground.
 

  1. What is the height of the flagpole \(BE\), correct to 1 decimal place?   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the height of the flagpole \(CD\), correct to 1 decimal place?   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   \(BE=25.4\ \text{m}\)

b.   \(CD=19.7\ \text{m}\)

Show Worked Solution

a.   \(\text{Using the sine rule:}\)

\(\dfrac{BE}{\sin 27^{\circ}}\) \(=\dfrac{53.8}{\sin 106^{\circ}}\)  
\(\therefore BE\) \(=\dfrac{53.8 \times \sin 27^{\circ}}{\sin 106^{\circ}}\)  
  \(=25.408…\)  
  \(=25.4\ \text{m (1 d.p.)}\)  

 

b.   \(CD=EB-XB\)

\(\text{Consider}\ \Delta XBC:\)

\(\angle XBC=180-106=74^{\circ}, \ XC=ED=20\)

\(\tan 74^{\circ}\) \(=\dfrac{20}{XB}\)  
\(XB\) \(=\dfrac{20}{\tan 74^{\circ}}\)  
  \(=5.73\ \text{m}\)  

 
\(CD=25.4-5.73=19.7\ \text{m (1 d.p.)}\)

♦♦ Mean mark (b) 35%.

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 4, Band 5, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2023 HSC 35

The diagram shows triangle `ABC`.
 

Calculate the area of the triangle, to the nearest square metre.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`147\ text{m}^2`

Show Worked Solution

`text{Using the sine rule:}`

`(CB)/sin60^@` `=12/sin25^@`  
`CB` `=sin60^@ xx 12/sin25^@`  
  `=24.590…`  

 
`angleACB=180-(60+25)=95^@\ \ text{(180° in Δ)}`
 

`text{Using the sine rule (Area):}`

`A` `=1/2 xx AC xx CB xx sin angleACB`  
  `=1/2 xx 12 xx 24.59 xx sin95^@`  
  `=146.98…`  
  `=147\ text{m}^2`  

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-30-Sine Rule (Area), smc-804-20-Sine Rule, smc-804-30-Sine Rule (Area)

Measurement, STD2 M6 2022 HSC 26

The diagram shows two right-angled triangles, `ABC` and `ABD`,

where `AC=35 \ text{cm},BD=93 \ text{cm}, /_ACB=41^(@)` and `/_ADB=theta`.
 
     

Calculate the size of angle `theta`, to the nearest minute.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`19^@6^{′}`

Show Worked Solution

`text{In}\ Delta ABC:`

`cos 41^@` `=35/(BC)`  
`BC` `=35/(cos 41^@)`  
  `=46.375…`  

 
`angle BCD = 180-41=139^@`
 

`text{Using sine rule in}\ Delta BCD:`

`sin theta/(46.375)` `=sin139^@/93`  
`sin theta` `=(sin 139^@ xx 46.375)/93`  
`:.theta` `=sin^(-1)((sin 139^@ xx 46.375)/93)`  
  `=19.09…`  
  `=19^@6^{′}\ \ text{(nearest minute)}`  

♦ Mean mark 50%.

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-4553-20-Sine Rule, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2021 HSC 37

The diagram shows a triangle `ABC` where `AC` = 25 cm, `BC` = 16 cm, `angle BAC` = 28° and angle `ABC` is obtuse.
 


 

Find the size of the obtuse angle `ABC` correct to the nearest degree.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`133°`

Show Worked Solution

`text(Using the sine rule:)`

♦♦ Mean mark 31%.
`sin theta/25` `= (sin 28°)/16`
`sin theta` `= (25 xx sin 28°)/16`
`sin theta` `= 0.73355`
`theta` `= 47°`
 
`:. angleABC` `= 180-47`
  `= 133°`

Filed Under: Non-Right Angled Trig (Std2) Tagged With: 2adv-std2-common, Band 5, common-content, smc-804-20-Sine Rule

Measurement, STD2 M6 SM-Bank 1

The diagram shows a triangle with side lengths 25 cm and 47 cm and angle 30° and `theta`.
 

Find  `theta`  given  it is an obtuse angle. Give your answer to the nearest minute.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`109°57′`

Show Worked Solution

`text(Using sine rule:)`

`(sintheta)/47` `= (sin30°)/25`
`sintheta` `=47 xx (1/2)/25`
`sintheta` `= 47/50`
`theta` `= sin^(−1)\ 47/50`
  `= 70.05\ text(or)\ 109.94`
  `= 109.948…\ \ (theta\ text(is obtuse))`
  `= 109°57′`

Filed Under: Non-Right Angled Trig (Std2) Tagged With: Band 4, smc-804-20-Sine Rule

Measurement, STD2 M6 2005 HSC 5 MC

Which formula should be used to calculate the distance between Toby and Frankie?

  1. `a/(sin A) = b/(sin B)`
  2. `c^2 = a^2 + b^2`
  3. `A = 1/2 ab\ sinC`
  4. `c^2 = a^2 + b^2 − 2ab\ cosC`
Show Answers Only

`A`

Show Worked Solution

`text(The triangle is not a right-angled triangle,)`

`:.\ text(Not)\ B`

`text(Given the information on the diagram provides)`

`text(2 angles and 1 side, the sine rule will work best.)`

`a/sinA = b/sinB`

`=> A`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-20-Sine Rule, smc-804-10-Cosine Rule, smc-804-20-Sine Rule

Measurement, STD2 M6 2007 HSC 25b

The angle of depression from `J` to `M` is 75°. The length of `JK` is 20 m and the length of `MK` is 18 m.
 

 
 

Copy or trace this diagram into your writing booklet and calculate the angle of elevation from `M` to `K`. Give your answer to the nearest degree.   (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`58^@`

Show Worked Solution

`/_AJL = 90^@`

`/_MJL = 90 – 75 = 15^@`

`text(Using sine rule in)\ Delta MJK`

`text(Let)\ /_JMK = x^@`

`20/sin x` `= 18/sin15^@`
`18 sin x` `= 20 xx sin 15^@`
`sin x` `= (20 xx sin 15^@)/18 = 0.2875…`
`x` `= 16.71…^@`
   
`/_JML = 75^@\ text{(} text(alternate angles,)\ ML \ text(||) \ AJ text{)}`

 

`:.\ /_KML` `= 75^@ – 16.71…`
  `= 58.287…^@`
  `= 58^@\ \ \ text{(nearest degree)}`

 

`:.\ text(Angle of Elevation from)\ M\ text(to)\ K\ text(is)\ 58^@.`

Filed Under: 2-Triangle and Harder Examples, Non-Right Angled Trig (Std2) Tagged With: Band 5, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2010 HSC 26d

Find the area of triangle `ABC`, correct to the nearest square metre.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`717\ text(m²)`    `text{(nearest m²)}`

Show Worked Solution
♦♦ Mean mark 32%.
TIP: The allocation of 3 marks to this question should flag the need for more than 1 step.
`cos/_C` `=(AC^2 + CB^2-AB^2)/(2 xx AC xx CB)`
  `=(50^2 + 40^2-83^2)/(2 xx 50 xx 40)`
  `= -0.69725…`
`/_C` `=134.2067…^@`

 

`text(Using Area) = 1/2 ab\ sinC :`
`text(Area)\ Delta ABC` `=1/2 xx 50 xx 40 xx sin134.2067…^@`
  `=716.828…`
  `=717\ text(m²)\ \ \ \ text{(nearest m²)}`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 5, num-title-ct-extension, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-4553-30-Sine Rule (Area), smc-804-10-Cosine Rule, smc-804-20-Sine Rule

Measurement, STD2 M6 2009 HSC 22 MC

In the diagram, `AD` and `DC` are equal to 30 cm. 
 

2UG-2009-22MC
 

 What is the length of `AB` to the nearest centimetre? 

  1.    `28\ text(cm)`
  2.    `31\ text(cm)` 
  3.    `34\ text(cm)`
  4.    `39\ text(cm)` 
Show Answers Only

`A`

Show Worked Solution
♦ Mean mark of 35%

`Delta ADC\ text(is isosceles)`

`/_DAB = /_DCA` `= x^@`
`2x + 80^@` `= 180^@\ \ \ (text{Angle sum of}\ DeltaADC)`
`2x` `= 100^@`
`x` `= 50^@`

 

`/_ DBA` `= 180\-(50 + 60)\ \ \ (text{Angle sum of}\ Delta ADB)`
  `= 70^@`

 

`text(Using sine rule:)`

`(AB)/sin60` `= 30/sin70`
`AB` `= (30 xx sin60)/sin70`
  `= 27.648…\ text(cm)`

`=>  A`

Filed Under: 2-Triangle and Harder Examples, Non-Right Angled Trig (Std2) Tagged With: Band 5, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2010 HSC 9 MC

Three towns `P`, `Q`  and `R` are marked on the diagram.

The distance from `R` to `P` is 76 km.  `angle RQP=26^circ`  and  `angle RPQ=46^@.`
 

 

  What is the distance from  `P`  to  `Q`  to the nearest kilometre?

  1. `100\ text(km)`
  2. `125\ text(km)`
  3. `165\ text(km)`
  4. `182\ text(km)`
Show Answers Only

`C`

Show Worked Solution
`angle QRP` `=180-(26+46)     (180^circ\ text(in) \ Delta)`
  `=108^circ`

 

`text{Using sine rule}`

`(PQ)/sin108^circ` `=76/sin26^circ`
`PQ` `=(76xxsin108^circ)/sin26^circ`
  `=164.88\ text(km)`

`=>  C`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-20-Sine Rule, smc-804-20-Sine Rule

Measurement, STD2 M6 2012 HSC 29c

Raj cycles around a course. The course starts at `E`, passes through `F`, `G` and `H` and finishes at `E`. The distances `EH` and `GH` are equal.
  

2012 29c

  1. What is the length of `EF`, to the nearest kilometre?  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. What is the total distance that Raj cycles, to the nearest kilometre?   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `22\ text{km    (nearest km)}`
  2. `202\ text{km    (nearest km)}`
Show Worked Solution

i.   `text(Find)\ EF:`

♦ Mean mark 48%.
`/_ FGE` `= 180\-(139 + 31) \ \ text{(angle sum of}\ Delta EFGtext{)}`
  `= 180-170`
  `= 10^@`

 
`text(Using Sine rule:)`

`(EF)/sin10^@` `= 82/sin139^@`
`EF` `= (82 xx sin10^@)/sin139^@`
  `= 21.70406…`
  `= 22\  text{km (nearest km)}`

 

ii.  `text(Let)\ \ d = text(total distance cycled)`

`text(Find)\ EH`

`text(S)text(ince)\ Delta EGH\ text(is isosceles, and)\ /_EHG = 90^@`

`/_GEH = /_HGE = 45^@`

`text{(angles opposite equal sides in}\ Delta EGHtext{)}`

♦ Mean mark 37%.
MARKER’S COMMENT: Students could also have used Pythagoras or the Sine rule to calculate `GH`.
`sin45^@` `= (GH)/82`
`GH` `= 82 xx sin45^@`
  `= 57.983…`

 

`:. d` `= EF + FG + GH + EH`
  `= 21.704… + 64 + 57.983 + 57.983`
  `= 201.66…`
  `= 202 \ text{km (nearest km)}`

Filed Under: 2-Triangle and Harder Examples, Non-Right Angled Trig (Std2) Tagged With: Band 5, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Measurement, STD2 M6 2013 HSC 24 MC

What is the value of  `theta`,  to the nearest degree?

2013 24 mc

  1.    `21^@`
  2.    `32^@`
  3.    `43^@`
  4.    `55^@`
Show Answers Only

`C`

Show Worked Solution
`a/sinA` `=b/sinB`
`82/sinA` `=100/sin26`
`sin A` `=(82 xx sin26)/100`
  `=0.35946…`
`/_A` `=21^@\ \ \ \ text{(nearest degree)}`

 
`text(S)text(ince)\   180^@\ text(in)\ Delta:`

`90+26+(theta+21)` `=180`
`theta` `=43^@`

 
`=>  C`

Filed Under: 2-Triangle and Harder Examples, Non-Right Angled Trig (Std2) Tagged With: Band 5, smc-804-20-Sine Rule, smc-804-40-2-Triangle

Copyright © 2014–2025 SmarterEd.com.au · Log in